非平稳反射布朗运动的精确模拟

M. Mousavi, P. Glynn
{"title":"非平稳反射布朗运动的精确模拟","authors":"M. Mousavi, P. Glynn","doi":"10.2139/ssrn.2373347","DOIUrl":null,"url":null,"abstract":"This paper develops the first method for the exact simulation of reflected Brownian motion (RBM) with non-stationary drift and infinitesimal variance. The running time of generating exact samples of non-stationary RBM at any time $t$ is uniformly bounded by $\\mathcal{O}(1/\\bar\\gamma^2)$ where $\\bar\\gamma$ is the average drift of the process. The method can be used as a guide for planning simulations of complex queueing systems with non-stationary arrival rates and/or service time.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exact Simulation of Non-Stationary Reflected Brownian Motion\",\"authors\":\"M. Mousavi, P. Glynn\",\"doi\":\"10.2139/ssrn.2373347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops the first method for the exact simulation of reflected Brownian motion (RBM) with non-stationary drift and infinitesimal variance. The running time of generating exact samples of non-stationary RBM at any time $t$ is uniformly bounded by $\\\\mathcal{O}(1/\\\\bar\\\\gamma^2)$ where $\\\\bar\\\\gamma$ is the average drift of the process. The method can be used as a guide for planning simulations of complex queueing systems with non-stationary arrival rates and/or service time.\",\"PeriodicalId\":129812,\"journal\":{\"name\":\"Financial Engineering eJournal\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2373347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2373347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了具有非平稳漂移和无限小方差的反射布朗运动(RBM)精确模拟的第一种方法。在任意时刻$t$生成非平稳RBM精确样本的运行时间均匀地以$\mathcal{O}(1/\bar\gamma^2)$为界,其中$\bar\gamma$为过程的平均漂移。该方法可用于具有非平稳到达率和/或服务时间的复杂排队系统的规划仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Simulation of Non-Stationary Reflected Brownian Motion
This paper develops the first method for the exact simulation of reflected Brownian motion (RBM) with non-stationary drift and infinitesimal variance. The running time of generating exact samples of non-stationary RBM at any time $t$ is uniformly bounded by $\mathcal{O}(1/\bar\gamma^2)$ where $\bar\gamma$ is the average drift of the process. The method can be used as a guide for planning simulations of complex queueing systems with non-stationary arrival rates and/or service time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信