{"title":"混合共享/分布式内存并行网络模拟器的性能","authors":"C. Kiddle, R. Simmonds, B. Unger","doi":"10.1145/1013329.1013334","DOIUrl":null,"url":null,"abstract":"Designing fast parallel discrete event simulation systems for shared-memory parallel computers is simplified by the efficient communication operations enabled by the common memory space. The difficulties involved in designing large shared-memory computers and the resulting high cost of even modest size systems has led to the proliferation of computer systems consisting of small shared-memory computers connected via low-latency message-passing interconnection networks. This paper describes how a network simulation system using a simulation kernel optimized for high performance operation on shared-memory parallel computers has been extended to operate on computers that mix shared-memory and message-passing paradigms. Results are presented showing that the system can achieve over 60 million simulated packet transmissions per second on 32 4-processor nodes. The results demonstrate the advantage of using a mixture of shared-memory and message-passing over using only message-passing in many cases.","PeriodicalId":326595,"journal":{"name":"18th Workshop on Parallel and Distributed Simulation, 2004. PADS 2004.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance of a mixed shared/distributed memory parallel network simulator\",\"authors\":\"C. Kiddle, R. Simmonds, B. Unger\",\"doi\":\"10.1145/1013329.1013334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing fast parallel discrete event simulation systems for shared-memory parallel computers is simplified by the efficient communication operations enabled by the common memory space. The difficulties involved in designing large shared-memory computers and the resulting high cost of even modest size systems has led to the proliferation of computer systems consisting of small shared-memory computers connected via low-latency message-passing interconnection networks. This paper describes how a network simulation system using a simulation kernel optimized for high performance operation on shared-memory parallel computers has been extended to operate on computers that mix shared-memory and message-passing paradigms. Results are presented showing that the system can achieve over 60 million simulated packet transmissions per second on 32 4-processor nodes. The results demonstrate the advantage of using a mixture of shared-memory and message-passing over using only message-passing in many cases.\",\"PeriodicalId\":326595,\"journal\":{\"name\":\"18th Workshop on Parallel and Distributed Simulation, 2004. PADS 2004.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Workshop on Parallel and Distributed Simulation, 2004. PADS 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1013329.1013334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Workshop on Parallel and Distributed Simulation, 2004. PADS 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013329.1013334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of a mixed shared/distributed memory parallel network simulator
Designing fast parallel discrete event simulation systems for shared-memory parallel computers is simplified by the efficient communication operations enabled by the common memory space. The difficulties involved in designing large shared-memory computers and the resulting high cost of even modest size systems has led to the proliferation of computer systems consisting of small shared-memory computers connected via low-latency message-passing interconnection networks. This paper describes how a network simulation system using a simulation kernel optimized for high performance operation on shared-memory parallel computers has been extended to operate on computers that mix shared-memory and message-passing paradigms. Results are presented showing that the system can achieve over 60 million simulated packet transmissions per second on 32 4-processor nodes. The results demonstrate the advantage of using a mixture of shared-memory and message-passing over using only message-passing in many cases.