字符序列行走路径的模式提取与可视化

Yuri Miyagi, M. Onishi, Chiemi Watanabe, T. Itoh, M. Takatsuka
{"title":"字符序列行走路径的模式提取与可视化","authors":"Yuri Miyagi, M. Onishi, Chiemi Watanabe, T. Itoh, M. Takatsuka","doi":"10.3154/TVSJ.38.7","DOIUrl":null,"url":null,"abstract":"People flow information brings us useful knowledge in various industrial and social fields including traffic, (cid:3) disaster prevention and marketing. However, it is still an open problem to develop effective people flow analysis techniques. We suppose compression and data mining techniques are especially important for analysis and visualization of large-scale people flow datasets. This paper presents a visualization tool for large-scale people flow dataset featuring compression and data mining techniques. This tool firstly compresses the people flow datasets using UniversalSAX, an extended method of SAX (Symbolic Aggregate Approximation). Next, we apply natural language algorithms to extract movement patterns. Applying Weighted Levenshtein Distance as dissimilarity between walking routes, we can compare features of each walking route and classify moving patterns. Finally, we visualize walking routes of people flow and extracted features to represent popular walking routes and congestions. Users can choose over view","PeriodicalId":226842,"journal":{"name":"Transaction of The Visualization Society of Japan","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern Extraction and Visualization of Walking Routes as Sequences of Characters\",\"authors\":\"Yuri Miyagi, M. Onishi, Chiemi Watanabe, T. Itoh, M. Takatsuka\",\"doi\":\"10.3154/TVSJ.38.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People flow information brings us useful knowledge in various industrial and social fields including traffic, (cid:3) disaster prevention and marketing. However, it is still an open problem to develop effective people flow analysis techniques. We suppose compression and data mining techniques are especially important for analysis and visualization of large-scale people flow datasets. This paper presents a visualization tool for large-scale people flow dataset featuring compression and data mining techniques. This tool firstly compresses the people flow datasets using UniversalSAX, an extended method of SAX (Symbolic Aggregate Approximation). Next, we apply natural language algorithms to extract movement patterns. Applying Weighted Levenshtein Distance as dissimilarity between walking routes, we can compare features of each walking route and classify moving patterns. Finally, we visualize walking routes of people flow and extracted features to represent popular walking routes and congestions. Users can choose over view\",\"PeriodicalId\":226842,\"journal\":{\"name\":\"Transaction of The Visualization Society of Japan\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transaction of The Visualization Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3154/TVSJ.38.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transaction of The Visualization Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3154/TVSJ.38.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人流信息为我们带来了各种工业和社会领域的有用知识,包括交通、防灾和市场营销。然而,开发有效的人员流动分析技术仍然是一个悬而未决的问题。我们认为压缩和数据挖掘技术对于大规模人流数据集的分析和可视化尤为重要。本文提出了一种基于压缩和数据挖掘技术的大规模人流数据可视化工具。该工具首先使用扩展的SAX (Symbolic Aggregate Approximation)方法UniversalSAX对人流数据集进行压缩。接下来,我们应用自然语言算法来提取运动模式。利用加权Levenshtein距离作为步行路径间的差异性,可以比较不同步行路径的特征,对不同步行路径的运动模式进行分类。最后,对人流的步行路线进行可视化,提取特征来表示热门的步行路线和拥挤的步行路线。用户可以选择查看
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern Extraction and Visualization of Walking Routes as Sequences of Characters
People flow information brings us useful knowledge in various industrial and social fields including traffic, (cid:3) disaster prevention and marketing. However, it is still an open problem to develop effective people flow analysis techniques. We suppose compression and data mining techniques are especially important for analysis and visualization of large-scale people flow datasets. This paper presents a visualization tool for large-scale people flow dataset featuring compression and data mining techniques. This tool firstly compresses the people flow datasets using UniversalSAX, an extended method of SAX (Symbolic Aggregate Approximation). Next, we apply natural language algorithms to extract movement patterns. Applying Weighted Levenshtein Distance as dissimilarity between walking routes, we can compare features of each walking route and classify moving patterns. Finally, we visualize walking routes of people flow and extracted features to represent popular walking routes and congestions. Users can choose over view
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信