不收缩的分解

Stefan Behrens, C. Davis, Mark Powell, Arunima Ray
{"title":"不收缩的分解","authors":"Stefan Behrens, C. Davis, Mark Powell, Arunima Ray","doi":"10.1093/oso/9780198841319.003.0006","DOIUrl":null,"url":null,"abstract":"‘A Decomposition That Does Not Shrink’ gives a nontrivial example of a decomposition of the 3-sphere such that the corresponding quotient space is not homeomorphic to the 3-sphere. The decomposition in question is called the Bing-2 decomposition. Similar to the Bing decomposition from the previous chapter, it consists of the connected components of the intersection of an infinite sequence of nested solid tori. However, unlike the Bing decomposition, the Bing-2 decomposition does not shrink. This indicates the subtlety of the question of which decompositions shrink. The question of when certain decompositions of the 3-sphere shrink is central to the proof of the disc embedding theorem.","PeriodicalId":272723,"journal":{"name":"The Disc Embedding Theorem","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Decomposition That Does Not Shrink\",\"authors\":\"Stefan Behrens, C. Davis, Mark Powell, Arunima Ray\",\"doi\":\"10.1093/oso/9780198841319.003.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‘A Decomposition That Does Not Shrink’ gives a nontrivial example of a decomposition of the 3-sphere such that the corresponding quotient space is not homeomorphic to the 3-sphere. The decomposition in question is called the Bing-2 decomposition. Similar to the Bing decomposition from the previous chapter, it consists of the connected components of the intersection of an infinite sequence of nested solid tori. However, unlike the Bing decomposition, the Bing-2 decomposition does not shrink. This indicates the subtlety of the question of which decompositions shrink. The question of when certain decompositions of the 3-sphere shrink is central to the proof of the disc embedding theorem.\",\"PeriodicalId\":272723,\"journal\":{\"name\":\"The Disc Embedding Theorem\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Disc Embedding Theorem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198841319.003.0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Disc Embedding Theorem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841319.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“一个不收缩的分解”给出了一个非平凡的3球分解的例子,使得相应的商空间不同胚于3球。这种分解被称为Bing-2分解。类似于前一章的Bing分解,它由嵌套立体环面无限序列的交点的连接分量组成。然而,与Bing分解不同的是,Bing-2分解不会收缩。这表明分解收缩问题的微妙之处。三球的某些分解何时收缩的问题是证明圆盘嵌入定理的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decomposition That Does Not Shrink
‘A Decomposition That Does Not Shrink’ gives a nontrivial example of a decomposition of the 3-sphere such that the corresponding quotient space is not homeomorphic to the 3-sphere. The decomposition in question is called the Bing-2 decomposition. Similar to the Bing decomposition from the previous chapter, it consists of the connected components of the intersection of an infinite sequence of nested solid tori. However, unlike the Bing decomposition, the Bing-2 decomposition does not shrink. This indicates the subtlety of the question of which decompositions shrink. The question of when certain decompositions of the 3-sphere shrink is central to the proof of the disc embedding theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信