{"title":"一种新的基于gep的多层关联规则挖掘算法","authors":"Hong-guo Cai, Chang-an Yuan, Jin-Guang Luo, Jin-de Huang","doi":"10.1109/CIS.2010.22","DOIUrl":null,"url":null,"abstract":"To mine popular accessed Web pages items and find out their association rule from the Web server Log database for junior users providing recommendation service. A novel GEP-based algorithm for mining multiple-layers association rules was presented. Firstly, takes generalizing technology as a way to value fitness function in GEP (Gene Expression Programming). Then, relying on the significant self-search function of GEP, the most optional species was evolved. The frequent items and association rules in the next deeper layers can be mined by using traditional support-confidence method in sub-database. The algorithm improves on the frame of traditional association rule mining and uses a new evolutionary algorithm for mining association rules. Finally, the validity and efficiency of the method are presented by the application in the paper.","PeriodicalId":420515,"journal":{"name":"2010 International Conference on Computational Intelligence and Security","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Novel GEP-Based Multiple-Layers Association Rule Mining Algorithm\",\"authors\":\"Hong-guo Cai, Chang-an Yuan, Jin-Guang Luo, Jin-de Huang\",\"doi\":\"10.1109/CIS.2010.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To mine popular accessed Web pages items and find out their association rule from the Web server Log database for junior users providing recommendation service. A novel GEP-based algorithm for mining multiple-layers association rules was presented. Firstly, takes generalizing technology as a way to value fitness function in GEP (Gene Expression Programming). Then, relying on the significant self-search function of GEP, the most optional species was evolved. The frequent items and association rules in the next deeper layers can be mined by using traditional support-confidence method in sub-database. The algorithm improves on the frame of traditional association rule mining and uses a new evolutionary algorithm for mining association rules. Finally, the validity and efficiency of the method are presented by the application in the paper.\",\"PeriodicalId\":420515,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Security\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2010.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2010.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel GEP-Based Multiple-Layers Association Rule Mining Algorithm
To mine popular accessed Web pages items and find out their association rule from the Web server Log database for junior users providing recommendation service. A novel GEP-based algorithm for mining multiple-layers association rules was presented. Firstly, takes generalizing technology as a way to value fitness function in GEP (Gene Expression Programming). Then, relying on the significant self-search function of GEP, the most optional species was evolved. The frequent items and association rules in the next deeper layers can be mined by using traditional support-confidence method in sub-database. The algorithm improves on the frame of traditional association rule mining and uses a new evolutionary algorithm for mining association rules. Finally, the validity and efficiency of the method are presented by the application in the paper.