一种虚拟无音中国乐器的设计和应用程序开发

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rongfeng Li, Ke Lyu
{"title":"一种虚拟无音中国乐器的设计和应用程序开发","authors":"Rongfeng Li,&nbsp;Ke Lyu","doi":"10.1049/ccs2.12046","DOIUrl":null,"url":null,"abstract":"<p>The article presents the design and development of a virtual fretless Chinese stringed instrument App with the Duxianqin as an example, whose performance is expected to be no different from a real instrument. The digital simulation of fretless musical instruments is mainly divided into two parts: the simulation of the continuous pitch processing of the strings, and the simulation of the sound produced by plucking strings. The article returns to the theory of mechanics and wave theory and obtains the quantitative relationship between string frequency and its deformation and elongation. The Duxianqin selected in this article is a fretless instrument, which cannot be completely simulated by relying solely on sound source data. Playing and vocalization require real-time synthesis through pitch processing, which has certain reference significance for the realization of other fretless instruments.</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"4 2","pages":"130-137"},"PeriodicalIF":1.2000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12046","citationCount":"1","resultStr":"{\"title\":\"Design and app development of a virtual fretless Chinese musical instrument\",\"authors\":\"Rongfeng Li,&nbsp;Ke Lyu\",\"doi\":\"10.1049/ccs2.12046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article presents the design and development of a virtual fretless Chinese stringed instrument App with the Duxianqin as an example, whose performance is expected to be no different from a real instrument. The digital simulation of fretless musical instruments is mainly divided into two parts: the simulation of the continuous pitch processing of the strings, and the simulation of the sound produced by plucking strings. The article returns to the theory of mechanics and wave theory and obtains the quantitative relationship between string frequency and its deformation and elongation. The Duxianqin selected in this article is a fretless instrument, which cannot be completely simulated by relying solely on sound source data. Playing and vocalization require real-time synthesis through pitch processing, which has certain reference significance for the realization of other fretless instruments.</p>\",\"PeriodicalId\":33652,\"journal\":{\"name\":\"Cognitive Computation and Systems\",\"volume\":\"4 2\",\"pages\":\"130-137\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12046\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

本文以独弦琴为例,设计并开发了一款虚拟无弦中国弦乐器App,其演奏效果与真实乐器相差无几。无音乐器的数字仿真主要分为两部分:对琴弦连续音高处理的仿真,以及对拨弦产生的声音的仿真。文章回归到力学理论和波动理论,得到了弦频与其变形伸长的定量关系。本文选用的独弦琴是一种无调音乐器,单纯依靠声源数据是无法完全模拟的。演奏和发声需要通过音高处理实时合成,这对其他无音乐器的实现具有一定的参考意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and app development of a virtual fretless Chinese musical instrument

Design and app development of a virtual fretless Chinese musical instrument

The article presents the design and development of a virtual fretless Chinese stringed instrument App with the Duxianqin as an example, whose performance is expected to be no different from a real instrument. The digital simulation of fretless musical instruments is mainly divided into two parts: the simulation of the continuous pitch processing of the strings, and the simulation of the sound produced by plucking strings. The article returns to the theory of mechanics and wave theory and obtains the quantitative relationship between string frequency and its deformation and elongation. The Duxianqin selected in this article is a fretless instrument, which cannot be completely simulated by relying solely on sound source data. Playing and vocalization require real-time synthesis through pitch processing, which has certain reference significance for the realization of other fretless instruments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信