基于视频的通用动作捕捉数据检索

Zifei Jiang, Zhen Li, Wei Li, Xue-qing Li, Jingliang Peng
{"title":"基于视频的通用动作捕捉数据检索","authors":"Zifei Jiang, Zhen Li, Wei Li, Xue-qing Li, Jingliang Peng","doi":"10.1109/APSIPAASC47483.2019.9023336","DOIUrl":null,"url":null,"abstract":"In this work we propose a novel and generic scheme for retrieval of motion capture (MoCap) data given a video query. We reconstruct skeleton animations from video clips by a convolutional neural network for 3-dimensional human pose estimation to narrow the gap between videos and MoCap data. A statistical motion signature is computed to extract both morphological and kinematic characteristics from the skeleton animations and the MoCap sequences. This as well ensures that the proposed scheme works on MoCap data with arbitrary skeleton structures. The retrieval is achieved by computing and sorting the distances between the motion signature of the query and those of the MoCap sequences which are pre-computed and stored in the MoCap database. For experimental evaluation, we respectively record a video dataset and capture a MoCap dataset with different performers, and conduct video-based MoCap data retrieval on them. Experimental results demonstrate the effectiveness of the proposed scheme.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generic Video-Based Motion Capture Data Retrieval\",\"authors\":\"Zifei Jiang, Zhen Li, Wei Li, Xue-qing Li, Jingliang Peng\",\"doi\":\"10.1109/APSIPAASC47483.2019.9023336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a novel and generic scheme for retrieval of motion capture (MoCap) data given a video query. We reconstruct skeleton animations from video clips by a convolutional neural network for 3-dimensional human pose estimation to narrow the gap between videos and MoCap data. A statistical motion signature is computed to extract both morphological and kinematic characteristics from the skeleton animations and the MoCap sequences. This as well ensures that the proposed scheme works on MoCap data with arbitrary skeleton structures. The retrieval is achieved by computing and sorting the distances between the motion signature of the query and those of the MoCap sequences which are pre-computed and stored in the MoCap database. For experimental evaluation, we respectively record a video dataset and capture a MoCap dataset with different performers, and conduct video-based MoCap data retrieval on them. Experimental results demonstrate the effectiveness of the proposed scheme.\",\"PeriodicalId\":145222,\"journal\":{\"name\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPAASC47483.2019.9023336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种新的通用方案来检索给定视频查询的运动捕捉(MoCap)数据。我们通过卷积神经网络从视频剪辑中重建骨架动画,用于三维人体姿态估计,以缩小视频和动作捕捉数据之间的差距。计算统计运动特征,从骨架动画和动作捕捉序列中提取形态和运动学特征。这也确保了所提出的方案适用于具有任意骨架结构的动作捕捉数据。检索通过计算和排序查询的运动特征与预先计算并存储在动作捕捉数据库中的动作捕捉序列的运动特征之间的距离来实现。为了进行实验评估,我们分别记录了一个视频数据集和捕捉了一个不同表演者的动作捕捉数据集,并对它们进行了基于视频的动作捕捉数据检索。实验结果证明了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic Video-Based Motion Capture Data Retrieval
In this work we propose a novel and generic scheme for retrieval of motion capture (MoCap) data given a video query. We reconstruct skeleton animations from video clips by a convolutional neural network for 3-dimensional human pose estimation to narrow the gap between videos and MoCap data. A statistical motion signature is computed to extract both morphological and kinematic characteristics from the skeleton animations and the MoCap sequences. This as well ensures that the proposed scheme works on MoCap data with arbitrary skeleton structures. The retrieval is achieved by computing and sorting the distances between the motion signature of the query and those of the MoCap sequences which are pre-computed and stored in the MoCap database. For experimental evaluation, we respectively record a video dataset and capture a MoCap dataset with different performers, and conduct video-based MoCap data retrieval on them. Experimental results demonstrate the effectiveness of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信