HA-SARSD:一种有效的基于混合注意残差模块的SAR舰船探测器

Nanjing Yu, H. Ren, Tianmin Deng, Xiaobiao Fan
{"title":"HA-SARSD:一种有效的基于混合注意残差模块的SAR舰船探测器","authors":"Nanjing Yu, H. Ren, Tianmin Deng, Xiaobiao Fan","doi":"10.1109/RadarConf2351548.2023.10149642","DOIUrl":null,"url":null,"abstract":"The all-day and all-weather characteristics of the synthetic aperture radar (SAR) images make them be widely applied in the maritime monitoring field. Recently, convolution neural networks-based (CNNs) SAR ship detection algorithms are hot research topics. However, owing to the indistinctive ship features and complex backgrounds, outstanding feature extraction ability is required. Moreover, it is challenging to balance the detection effect and the inference speed. Therefore, a novel hybrid attention-synthetic aperture radar ships detector (HA-SARSD) based on the You Only Look Once version 5 (YOLOv5) is proposed in this paper. The local hybrid attention residual module (LHARM) is designed to optimize the feature extraction ability. Owing to the abundant channels in the deep-level feature, LHARM is developed in the fifth layer of HA-SARSD. Experimental results on Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) and SSDD datasets show that HA-SARSD optimizes the SAR ship feature extraction ability and obtains the balance of detection effect and speed.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"HA-SARSD: An Effective SAR Ship detector via the Hybrid Attention Residual Module\",\"authors\":\"Nanjing Yu, H. Ren, Tianmin Deng, Xiaobiao Fan\",\"doi\":\"10.1109/RadarConf2351548.2023.10149642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The all-day and all-weather characteristics of the synthetic aperture radar (SAR) images make them be widely applied in the maritime monitoring field. Recently, convolution neural networks-based (CNNs) SAR ship detection algorithms are hot research topics. However, owing to the indistinctive ship features and complex backgrounds, outstanding feature extraction ability is required. Moreover, it is challenging to balance the detection effect and the inference speed. Therefore, a novel hybrid attention-synthetic aperture radar ships detector (HA-SARSD) based on the You Only Look Once version 5 (YOLOv5) is proposed in this paper. The local hybrid attention residual module (LHARM) is designed to optimize the feature extraction ability. Owing to the abundant channels in the deep-level feature, LHARM is developed in the fifth layer of HA-SARSD. Experimental results on Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) and SSDD datasets show that HA-SARSD optimizes the SAR ship feature extraction ability and obtains the balance of detection effect and speed.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

合成孔径雷达(SAR)图像全天、全天候的特点使其在海上监测领域得到了广泛的应用。基于卷积神经网络的SAR船舶检测算法是近年来研究的热点。但由于舰船特征不明显,背景复杂,对舰船特征提取能力要求很高。此外,如何平衡检测效果和推理速度是一个挑战。为此,本文提出了一种基于You Only Look Once version 5 (YOLOv5)的新型混合注意-合成孔径雷达舰船探测器(HA-SARSD)。为了优化特征提取能力,设计了局部混合注意残差模块(LHARM)。由于深层特征中通道丰富,LHARM发育在HA-SARSD的第五层。在大尺度SAR船舶检测数据集v1.0 (LS-SSDD-v1.0)和SSDD数据集上的实验结果表明,HA-SARSD优化了SAR船舶特征提取能力,实现了检测效果和速度的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HA-SARSD: An Effective SAR Ship detector via the Hybrid Attention Residual Module
The all-day and all-weather characteristics of the synthetic aperture radar (SAR) images make them be widely applied in the maritime monitoring field. Recently, convolution neural networks-based (CNNs) SAR ship detection algorithms are hot research topics. However, owing to the indistinctive ship features and complex backgrounds, outstanding feature extraction ability is required. Moreover, it is challenging to balance the detection effect and the inference speed. Therefore, a novel hybrid attention-synthetic aperture radar ships detector (HA-SARSD) based on the You Only Look Once version 5 (YOLOv5) is proposed in this paper. The local hybrid attention residual module (LHARM) is designed to optimize the feature extraction ability. Owing to the abundant channels in the deep-level feature, LHARM is developed in the fifth layer of HA-SARSD. Experimental results on Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) and SSDD datasets show that HA-SARSD optimizes the SAR ship feature extraction ability and obtains the balance of detection effect and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信