非欧几里德色彩空间的色彩插值

Max Zeyen, Tobias Post, H. Hagen, J. Ahrens, D. Rogers, R. Bujack
{"title":"非欧几里德色彩空间的色彩插值","authors":"Max Zeyen, Tobias Post, H. Hagen, J. Ahrens, D. Rogers, R. Bujack","doi":"10.1109/SciVis.2018.8823597","DOIUrl":null,"url":null,"abstract":"Color interpolation is critical to many applications across a variety of domains, like color mapping or image processing. Due to the characteristics of the human visual system, color spaces whose distance measure is designed to mimic perceptual color differences tend to be non-Euclidean. In this setting, a generalization of established interpolation schemes is not trivial. This paper presents an approach to generalize linear interpolation to colors for color spaces equipped with an arbitrary non-Euclidean distance measure. It makes use of the fact that in Euclidean spaces, a straight line coincides with the shortest path between two points. Additionally, we provide an interactive implementation of our method for the CIELAB color space using the CIEDE2000 distance measure integrated into VTK and ParaView.","PeriodicalId":306021,"journal":{"name":"2018 IEEE Scientific Visualization Conference (SciVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Color Interpolation for Non-Euclidean Color Spaces\",\"authors\":\"Max Zeyen, Tobias Post, H. Hagen, J. Ahrens, D. Rogers, R. Bujack\",\"doi\":\"10.1109/SciVis.2018.8823597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color interpolation is critical to many applications across a variety of domains, like color mapping or image processing. Due to the characteristics of the human visual system, color spaces whose distance measure is designed to mimic perceptual color differences tend to be non-Euclidean. In this setting, a generalization of established interpolation schemes is not trivial. This paper presents an approach to generalize linear interpolation to colors for color spaces equipped with an arbitrary non-Euclidean distance measure. It makes use of the fact that in Euclidean spaces, a straight line coincides with the shortest path between two points. Additionally, we provide an interactive implementation of our method for the CIELAB color space using the CIEDE2000 distance measure integrated into VTK and ParaView.\",\"PeriodicalId\":306021,\"journal\":{\"name\":\"2018 IEEE Scientific Visualization Conference (SciVis)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Scientific Visualization Conference (SciVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SciVis.2018.8823597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Scientific Visualization Conference (SciVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SciVis.2018.8823597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

颜色插值对于许多领域的应用都是至关重要的,比如颜色映射或图像处理。由于人类视觉系统的特点,其距离度量被设计为模拟感知色差的色彩空间往往是非欧几里得的。在这种情况下,对已建立的插值方案进行推广并不是微不足道的。本文提出了一种将线性插值推广到具有任意非欧几里德距离测度的色彩空间的方法。它利用了欧几里得空间中直线与两点间最短路径重合的事实。此外,我们使用集成到VTK和ParaView中的CIEDE2000距离测量,为CIELAB色彩空间提供了我们的方法的交互式实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color Interpolation for Non-Euclidean Color Spaces
Color interpolation is critical to many applications across a variety of domains, like color mapping or image processing. Due to the characteristics of the human visual system, color spaces whose distance measure is designed to mimic perceptual color differences tend to be non-Euclidean. In this setting, a generalization of established interpolation schemes is not trivial. This paper presents an approach to generalize linear interpolation to colors for color spaces equipped with an arbitrary non-Euclidean distance measure. It makes use of the fact that in Euclidean spaces, a straight line coincides with the shortest path between two points. Additionally, we provide an interactive implementation of our method for the CIELAB color space using the CIEDE2000 distance measure integrated into VTK and ParaView.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信