基于文本概念空间的图像分类器反事实解释

Siwon Kim, Jinoh Oh, Sungjin Lee, Seunghak Yu, Jaeyoung Do, Tara Taghavi
{"title":"基于文本概念空间的图像分类器反事实解释","authors":"Siwon Kim, Jinoh Oh, Sungjin Lee, Seunghak Yu, Jaeyoung Do, Tara Taghavi","doi":"10.1109/CVPR52729.2023.01053","DOIUrl":null,"url":null,"abstract":"Concept-based explanation aims to provide concise and human-understandable explanations of an image classifier. However, existing concept-based explanation methods typically require a significant amount of manually collected concept-annotated images. This is costly and runs the risk of human biases being involved in the explanation. In this paper, we propose Counterfactual explanation with text-driven concepts (CounTEX), where the concepts are defined only from text by leveraging a pretrained multimodal joint embedding space without additional concept-annotated datasets. A conceptual counterfactual explanation is generated with text-driven concepts. To utilize the text-driven concepts defined in the joint embedding space to interpret target classifier outcome, we present a novel projection scheme for mapping the two spaces with a simple yet effective implementation. We show that CounTEX generates faithful explanations that provide a semantic understanding of model decision rationale robust to human bias.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Grounding Counterfactual Explanation of Image Classifiers to Textual Concept Space\",\"authors\":\"Siwon Kim, Jinoh Oh, Sungjin Lee, Seunghak Yu, Jaeyoung Do, Tara Taghavi\",\"doi\":\"10.1109/CVPR52729.2023.01053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concept-based explanation aims to provide concise and human-understandable explanations of an image classifier. However, existing concept-based explanation methods typically require a significant amount of manually collected concept-annotated images. This is costly and runs the risk of human biases being involved in the explanation. In this paper, we propose Counterfactual explanation with text-driven concepts (CounTEX), where the concepts are defined only from text by leveraging a pretrained multimodal joint embedding space without additional concept-annotated datasets. A conceptual counterfactual explanation is generated with text-driven concepts. To utilize the text-driven concepts defined in the joint embedding space to interpret target classifier outcome, we present a novel projection scheme for mapping the two spaces with a simple yet effective implementation. We show that CounTEX generates faithful explanations that provide a semantic understanding of model decision rationale robust to human bias.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.01053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.01053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于概念的解释旨在为图像分类器提供简明易懂的解释。然而,现有的基于概念的解释方法通常需要大量手工收集的带概念注释的图像。这是昂贵的,并且有可能在解释中涉及人类偏见。在本文中,我们提出了使用文本驱动概念(CounTEX)的反事实解释,其中概念仅通过利用预训练的多模态联合嵌入空间从文本中定义,而没有额外的概念注释数据集。概念反事实解释是由文本驱动的概念生成的。为了利用在联合嵌入空间中定义的文本驱动概念来解释目标分类器的结果,我们提出了一种新的投影方案,用于映射两个空间,并且实现简单而有效。我们表明,CounTEX生成忠实的解释,提供对模型决策原理的语义理解,以抵抗人类偏见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grounding Counterfactual Explanation of Image Classifiers to Textual Concept Space
Concept-based explanation aims to provide concise and human-understandable explanations of an image classifier. However, existing concept-based explanation methods typically require a significant amount of manually collected concept-annotated images. This is costly and runs the risk of human biases being involved in the explanation. In this paper, we propose Counterfactual explanation with text-driven concepts (CounTEX), where the concepts are defined only from text by leveraging a pretrained multimodal joint embedding space without additional concept-annotated datasets. A conceptual counterfactual explanation is generated with text-driven concepts. To utilize the text-driven concepts defined in the joint embedding space to interpret target classifier outcome, we present a novel projection scheme for mapping the two spaces with a simple yet effective implementation. We show that CounTEX generates faithful explanations that provide a semantic understanding of model decision rationale robust to human bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信