概率潜张量分解的马尔可夫链蒙特卡罗推理

Umut Simsekli, A. Cemgil
{"title":"概率潜张量分解的马尔可夫链蒙特卡罗推理","authors":"Umut Simsekli, A. Cemgil","doi":"10.1109/MLSP.2012.6349799","DOIUrl":null,"url":null,"abstract":"Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modeling multi-way data. Not only the popular tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents Markov Chain Monte Carlo procedures (namely the Gibbs sampler) for making inference on the PLTF framework. We provide the abstract algorithms that are derived for the general case and the overall procedure is illustrated on both synthetic and real data.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Markov Chain Monte Carlo inference for probabilistic latent tensor factorization\",\"authors\":\"Umut Simsekli, A. Cemgil\",\"doi\":\"10.1109/MLSP.2012.6349799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modeling multi-way data. Not only the popular tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents Markov Chain Monte Carlo procedures (namely the Gibbs sampler) for making inference on the PLTF framework. We provide the abstract algorithms that are derived for the general case and the overall procedure is illustrated on both synthetic and real data.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

概率潜张量分解(PLTF)是最近提出的一种用于多路数据建模的概率框架。PLTF框架不仅可以实现常用的张量分解模型,还可以实现任意张量分解结构。本文提出了马尔可夫链蒙特卡罗程序(即吉布斯采样器),用于对PLTF框架进行推理。我们提供了一般情况下推导的抽象算法,并在综合数据和实际数据上说明了整个过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markov Chain Monte Carlo inference for probabilistic latent tensor factorization
Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modeling multi-way data. Not only the popular tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents Markov Chain Monte Carlo procedures (namely the Gibbs sampler) for making inference on the PLTF framework. We provide the abstract algorithms that are derived for the general case and the overall procedure is illustrated on both synthetic and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信