Amit Parag, Sébastien Kleff, Léo Saci, N. Mansard, O. Stasse
{"title":"基于轨迹优化和Sobolev下降的价值学习:向具有超线性收敛特性的强化学习迈出的一步","authors":"Amit Parag, Sébastien Kleff, Léo Saci, N. Mansard, O. Stasse","doi":"10.1109/icra46639.2022.9811993","DOIUrl":null,"url":null,"abstract":"The recent successes in deep reinforcement learning largely rely on the capabilities of generating masses of data, which in turn implies the use of a simulator. In particular, current progress in multi body dynamic simulators are under-pinning the implementation of reinforcement learning for end-to-end control of robotic systems. Yet simulators are mostly considered as black boxes while we have the knowledge to make them produce a richer information. In this paper, we are proposing to use the derivatives of the simulator to help with the convergence of the learning. For that, we combine model-based trajectory optimization to produce informative trials using 1st- and 2nd-order simulation derivatives. These locally-optimal runs give fair estimates of the value function and its derivatives, that we use to accelerate the convergence of the critics using Sobolev learning. We empirically demonstrate that the algorithm leads to a faster and more accurate estimation of the value function. The resulting value estimate is used in model-predictive controller as a proxy for shortening the preview horizon. We believe that it is also a first step toward superlinear reinforcement learning algorithm using simulation derivatives, that we need for end-to-end legged locomotion.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Value learning from trajectory optimization and Sobolev descent: A step toward reinforcement learning with superlinear convergence properties\",\"authors\":\"Amit Parag, Sébastien Kleff, Léo Saci, N. Mansard, O. Stasse\",\"doi\":\"10.1109/icra46639.2022.9811993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent successes in deep reinforcement learning largely rely on the capabilities of generating masses of data, which in turn implies the use of a simulator. In particular, current progress in multi body dynamic simulators are under-pinning the implementation of reinforcement learning for end-to-end control of robotic systems. Yet simulators are mostly considered as black boxes while we have the knowledge to make them produce a richer information. In this paper, we are proposing to use the derivatives of the simulator to help with the convergence of the learning. For that, we combine model-based trajectory optimization to produce informative trials using 1st- and 2nd-order simulation derivatives. These locally-optimal runs give fair estimates of the value function and its derivatives, that we use to accelerate the convergence of the critics using Sobolev learning. We empirically demonstrate that the algorithm leads to a faster and more accurate estimation of the value function. The resulting value estimate is used in model-predictive controller as a proxy for shortening the preview horizon. We believe that it is also a first step toward superlinear reinforcement learning algorithm using simulation derivatives, that we need for end-to-end legged locomotion.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icra46639.2022.9811993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Value learning from trajectory optimization and Sobolev descent: A step toward reinforcement learning with superlinear convergence properties
The recent successes in deep reinforcement learning largely rely on the capabilities of generating masses of data, which in turn implies the use of a simulator. In particular, current progress in multi body dynamic simulators are under-pinning the implementation of reinforcement learning for end-to-end control of robotic systems. Yet simulators are mostly considered as black boxes while we have the knowledge to make them produce a richer information. In this paper, we are proposing to use the derivatives of the simulator to help with the convergence of the learning. For that, we combine model-based trajectory optimization to produce informative trials using 1st- and 2nd-order simulation derivatives. These locally-optimal runs give fair estimates of the value function and its derivatives, that we use to accelerate the convergence of the critics using Sobolev learning. We empirically demonstrate that the algorithm leads to a faster and more accurate estimation of the value function. The resulting value estimate is used in model-predictive controller as a proxy for shortening the preview horizon. We believe that it is also a first step toward superlinear reinforcement learning algorithm using simulation derivatives, that we need for end-to-end legged locomotion.