H. Amrouch, P. Krishnamurthy, Naman Patel, J. Henkel, R. Karri, F. Khorrami
{"title":"嵌入式系统新出现的(非)基于可靠性的安全威胁和缓解:特别会议","authors":"H. Amrouch, P. Krishnamurthy, Naman Patel, J. Henkel, R. Karri, F. Khorrami","doi":"10.1145/3125501.3125529","DOIUrl":null,"url":null,"abstract":"This paper addresses two reliability-based security threats and mitigations for embedded systems namely, aging and thermal side channels. Device aging can be used as a hardware attack vector by using voltage scaling or specially crafted instruction sequences to violate embedded processor guard bands. Short-term aging effects can be utilized to cause transient degradation of the embedded device without leaving any trace of the attack. (Thermal) side channels can be used as an attack vector and as a defense. Specifically, thermal side channels are an effective and secure way to remotely monitor code execution on an embedded processor and/or to possibly leak information. Although various algorithmic means to detect anomaly are available, machine learning tools are effective for anomaly detection. We will show such utilization of deep learning networks in conjunction with thermal side channels to detect code injection/modification representing anomaly.","PeriodicalId":259093,"journal":{"name":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Emerging (un-)reliability based security threats and mitigations for embedded systems: special session\",\"authors\":\"H. Amrouch, P. Krishnamurthy, Naman Patel, J. Henkel, R. Karri, F. Khorrami\",\"doi\":\"10.1145/3125501.3125529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses two reliability-based security threats and mitigations for embedded systems namely, aging and thermal side channels. Device aging can be used as a hardware attack vector by using voltage scaling or specially crafted instruction sequences to violate embedded processor guard bands. Short-term aging effects can be utilized to cause transient degradation of the embedded device without leaving any trace of the attack. (Thermal) side channels can be used as an attack vector and as a defense. Specifically, thermal side channels are an effective and secure way to remotely monitor code execution on an embedded processor and/or to possibly leak information. Although various algorithmic means to detect anomaly are available, machine learning tools are effective for anomaly detection. We will show such utilization of deep learning networks in conjunction with thermal side channels to detect code injection/modification representing anomaly.\",\"PeriodicalId\":259093,\"journal\":{\"name\":\"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3125501.3125529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Compilers, Architectures and Synthesis for Embedded Systems Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3125501.3125529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Emerging (un-)reliability based security threats and mitigations for embedded systems: special session
This paper addresses two reliability-based security threats and mitigations for embedded systems namely, aging and thermal side channels. Device aging can be used as a hardware attack vector by using voltage scaling or specially crafted instruction sequences to violate embedded processor guard bands. Short-term aging effects can be utilized to cause transient degradation of the embedded device without leaving any trace of the attack. (Thermal) side channels can be used as an attack vector and as a defense. Specifically, thermal side channels are an effective and secure way to remotely monitor code execution on an embedded processor and/or to possibly leak information. Although various algorithmic means to detect anomaly are available, machine learning tools are effective for anomaly detection. We will show such utilization of deep learning networks in conjunction with thermal side channels to detect code injection/modification representing anomaly.