差分演化下移动Ad-hoc网络的最优路径

S. Prabha, R. Yadav
{"title":"差分演化下移动Ad-hoc网络的最优路径","authors":"S. Prabha, R. Yadav","doi":"10.1109/RAETCS.2018.8443799","DOIUrl":null,"url":null,"abstract":"In this paper differential evolution is applied to solve optimum path issues for data transmission from source to destination in mobile ad-hoc networks. The differential evolution based optimization model used to analyze and establish best available optimal path in mobile ad-hoc networks. The model keep transmission cost into consideration to search for minimum cost consumption path. The differential evolution algorithm is utilized as a search tool, to search for minimum transmission consumption through established optimization model. Finally results acquired by proposed algorithm clearly reveal the effectiveness, in contrast to evolutionary algorithm PSO and GA.","PeriodicalId":131311,"journal":{"name":"2018 Recent Advances on Engineering, Technology and Computational Sciences (RAETCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Path in Mobile Ad-hoc Networks with Differential Evolution\",\"authors\":\"S. Prabha, R. Yadav\",\"doi\":\"10.1109/RAETCS.2018.8443799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper differential evolution is applied to solve optimum path issues for data transmission from source to destination in mobile ad-hoc networks. The differential evolution based optimization model used to analyze and establish best available optimal path in mobile ad-hoc networks. The model keep transmission cost into consideration to search for minimum cost consumption path. The differential evolution algorithm is utilized as a search tool, to search for minimum transmission consumption through established optimization model. Finally results acquired by proposed algorithm clearly reveal the effectiveness, in contrast to evolutionary algorithm PSO and GA.\",\"PeriodicalId\":131311,\"journal\":{\"name\":\"2018 Recent Advances on Engineering, Technology and Computational Sciences (RAETCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Recent Advances on Engineering, Technology and Computational Sciences (RAETCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAETCS.2018.8443799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Recent Advances on Engineering, Technology and Computational Sciences (RAETCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAETCS.2018.8443799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将差分进化理论应用于移动自组织网络中数据从源到目的传输的最优路径问题。基于差分进化的优化模型用于分析和建立移动自组网中最优可用路径。该模型考虑传输成本,寻找最小成本消耗路径。利用差分进化算法作为搜索工具,通过建立的优化模型搜索最小传输消耗。与进化算法PSO和遗传算法相比,该算法的有效性得到了明显的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Path in Mobile Ad-hoc Networks with Differential Evolution
In this paper differential evolution is applied to solve optimum path issues for data transmission from source to destination in mobile ad-hoc networks. The differential evolution based optimization model used to analyze and establish best available optimal path in mobile ad-hoc networks. The model keep transmission cost into consideration to search for minimum cost consumption path. The differential evolution algorithm is utilized as a search tool, to search for minimum transmission consumption through established optimization model. Finally results acquired by proposed algorithm clearly reveal the effectiveness, in contrast to evolutionary algorithm PSO and GA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信