有限生成的极大部分克隆及其交点

Miguel Couceiro, L. Haddad
{"title":"有限生成的极大部分克隆及其交点","authors":"Miguel Couceiro, L. Haddad","doi":"10.1109/ISMVL.2010.31","DOIUrl":null,"url":null,"abstract":"Let $A$ be a finite non-singleton set. For $|A|=2$ we show that the partial clone consisting of all self-dual monotonic partial functions on $A$ is not finitely generated, while it is the intersection of two finitely generated maximal partial clones on $A$. Moreover, for $|A| \\ge 3$ we show that there are pairs of finitely generated maximal partial clones whose intersection is a not finitely generated partial clone on $A$.","PeriodicalId":447743,"journal":{"name":"2010 40th IEEE International Symposium on Multiple-Valued Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Finitely Generated Maximal Partial Clones and Their Intersections\",\"authors\":\"Miguel Couceiro, L. Haddad\",\"doi\":\"10.1109/ISMVL.2010.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $A$ be a finite non-singleton set. For $|A|=2$ we show that the partial clone consisting of all self-dual monotonic partial functions on $A$ is not finitely generated, while it is the intersection of two finitely generated maximal partial clones on $A$. Moreover, for $|A| \\\\ge 3$ we show that there are pairs of finitely generated maximal partial clones whose intersection is a not finitely generated partial clone on $A$.\",\"PeriodicalId\":447743,\"journal\":{\"name\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2010.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 40th IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2010.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设$A$是一个有限非单元素集合。对于$|A|=2$,我们证明了$A$上由所有自对偶单调偏函数组成的部分克隆不是有限生成的,而它是$A$上两个有限生成的极大部分克隆的交集。此外,对于$|A| \ge 3$,我们证明了存在一对有限生成的极大部分克隆,它们的交集是$A$上的非有限生成的部分克隆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finitely Generated Maximal Partial Clones and Their Intersections
Let $A$ be a finite non-singleton set. For $|A|=2$ we show that the partial clone consisting of all self-dual monotonic partial functions on $A$ is not finitely generated, while it is the intersection of two finitely generated maximal partial clones on $A$. Moreover, for $|A| \ge 3$ we show that there are pairs of finitely generated maximal partial clones whose intersection is a not finitely generated partial clone on $A$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信