具有出生脉冲和脉冲处理的随机SIS流行病模型动力学

Guoqiang Deng, Aimin Tang, Miaomiao Xing, Lin Ling, Guirong Jiang, Wentao Huang
{"title":"具有出生脉冲和脉冲处理的随机SIS流行病模型动力学","authors":"Guoqiang Deng, Aimin Tang, Miaomiao Xing, Lin Ling, Guirong Jiang, Wentao Huang","doi":"10.1109/CIS.2017.00101","DOIUrl":null,"url":null,"abstract":"In this paper, a stochastic SIS epidemic model with birth pulses and pulse treatments is constructed and investigated. By applying Floquet theory and qualitative theory of stochastic differential equations, the existence and stability of trivial solution and infection-free periodic solution are discussed. A special endemic solution and the boundedness of infective individuals are investigated. Numerical results for phase portraits, which are illustrated with two examples, are in good agreement with the theoretical analysis.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a Stochastic SIS Epidemic Model with Birth Pulses and Pulse Treatments\",\"authors\":\"Guoqiang Deng, Aimin Tang, Miaomiao Xing, Lin Ling, Guirong Jiang, Wentao Huang\",\"doi\":\"10.1109/CIS.2017.00101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a stochastic SIS epidemic model with birth pulses and pulse treatments is constructed and investigated. By applying Floquet theory and qualitative theory of stochastic differential equations, the existence and stability of trivial solution and infection-free periodic solution are discussed. A special endemic solution and the boundedness of infective individuals are investigated. Numerical results for phase portraits, which are illustrated with two examples, are in good agreement with the theoretical analysis.\",\"PeriodicalId\":304958,\"journal\":{\"name\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2017.00101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文构造并研究了一个具有出生脉冲和脉冲处理的随机SIS流行病模型。利用Floquet理论和随机微分方程的定性理论,讨论了随机微分方程平凡解和无感染周期解的存在性和稳定性。研究了一种特殊的地方性解和感染个体的有界性。两个算例表明,相像的数值计算结果与理论分析吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of a Stochastic SIS Epidemic Model with Birth Pulses and Pulse Treatments
In this paper, a stochastic SIS epidemic model with birth pulses and pulse treatments is constructed and investigated. By applying Floquet theory and qualitative theory of stochastic differential equations, the existence and stability of trivial solution and infection-free periodic solution are discussed. A special endemic solution and the boundedness of infective individuals are investigated. Numerical results for phase portraits, which are illustrated with two examples, are in good agreement with the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信