美国上市公司的会计欺诈检测:机器学习方法

Bin Li, Julia Yu, Jie Zhang, B. Ke
{"title":"美国上市公司的会计欺诈检测:机器学习方法","authors":"Bin Li, Julia Yu, Jie Zhang, B. Ke","doi":"10.2139/SSRN.2670703","DOIUrl":null,"url":null,"abstract":"This paper studies how machine learning techniques can facilitate the detection of accounting fraud in publicly traded US rms. Existing studies often mimic human experts and employ the nancial or nonnancial","PeriodicalId":119756,"journal":{"name":"Asian Conference on Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Detecting Accounting Frauds in Publicly Traded U.S. Firms: A Machine Learning Approach\",\"authors\":\"Bin Li, Julia Yu, Jie Zhang, B. Ke\",\"doi\":\"10.2139/SSRN.2670703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies how machine learning techniques can facilitate the detection of accounting fraud in publicly traded US rms. Existing studies often mimic human experts and employ the nancial or nonnancial\",\"PeriodicalId\":119756,\"journal\":{\"name\":\"Asian Conference on Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Conference on Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.2670703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Conference on Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2670703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文研究了机器学习技术如何促进美国上市公司会计欺诈的检测。现有的研究经常模仿人类专家,并采用金融或非金融手段
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Accounting Frauds in Publicly Traded U.S. Firms: A Machine Learning Approach
This paper studies how machine learning techniques can facilitate the detection of accounting fraud in publicly traded US rms. Existing studies often mimic human experts and employ the nancial or nonnancial
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信