一种基于分层模型的时空条件随机场帧率上转换方法

M. Shafiee, Z. Azimifar, A. Wong, P. Fieguth
{"title":"一种基于分层模型的时空条件随机场帧率上转换方法","authors":"M. Shafiee, Z. Azimifar, A. Wong, P. Fieguth","doi":"10.1109/ISM.2011.44","DOIUrl":null,"url":null,"abstract":"In this paper, a hierarchical model-based approach to frame rate-up conversion is presented. Given a sequence of consecutive video frames, a Spatio-Temporal Conditional Random Field (ST-CRF) is trained to capture both the motion and shape characteristics of objects within consecutive frames. A hierarchical tree is then constructed via hierarchical segmentation that sub-divides frames into regions based on color intensity and regional velocity. A hierarchical sampling approach is then introduced to construct new intermediate frames between adjacent video frames, where estimated intermediate frames are constructed at each level of a hierarchical tree constructed such that the probability of the ST-CRF is maximized. Preliminary results using videos with different motion characteristics show that the proposed approach has potential for producing intermediate frames with high visual quality.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Hierarchical Model-Based Frame Rate Up-Conversion via Spatio-temporal Conditional Random Fields\",\"authors\":\"M. Shafiee, Z. Azimifar, A. Wong, P. Fieguth\",\"doi\":\"10.1109/ISM.2011.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a hierarchical model-based approach to frame rate-up conversion is presented. Given a sequence of consecutive video frames, a Spatio-Temporal Conditional Random Field (ST-CRF) is trained to capture both the motion and shape characteristics of objects within consecutive frames. A hierarchical tree is then constructed via hierarchical segmentation that sub-divides frames into regions based on color intensity and regional velocity. A hierarchical sampling approach is then introduced to construct new intermediate frames between adjacent video frames, where estimated intermediate frames are constructed at each level of a hierarchical tree constructed such that the probability of the ST-CRF is maximized. Preliminary results using videos with different motion characteristics show that the proposed approach has potential for producing intermediate frames with high visual quality.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于层次模型的帧速率转换方法。给定连续视频帧序列,训练时空条件随机场(ST-CRF)来捕获连续帧内物体的运动和形状特征。然后通过分层分割构建层次树,根据颜色强度和区域速度将帧细分为区域。然后,引入分层采样方法在相邻视频帧之间构建新的中间帧,其中在构建的分层树的每个级别构建估计的中间帧,从而使ST-CRF的概率最大化。使用具有不同运动特征的视频的初步结果表明,该方法具有产生高视觉质量的中间帧的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Hierarchical Model-Based Frame Rate Up-Conversion via Spatio-temporal Conditional Random Fields
In this paper, a hierarchical model-based approach to frame rate-up conversion is presented. Given a sequence of consecutive video frames, a Spatio-Temporal Conditional Random Field (ST-CRF) is trained to capture both the motion and shape characteristics of objects within consecutive frames. A hierarchical tree is then constructed via hierarchical segmentation that sub-divides frames into regions based on color intensity and regional velocity. A hierarchical sampling approach is then introduced to construct new intermediate frames between adjacent video frames, where estimated intermediate frames are constructed at each level of a hierarchical tree constructed such that the probability of the ST-CRF is maximized. Preliminary results using videos with different motion characteristics show that the proposed approach has potential for producing intermediate frames with high visual quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信