基于运动轨迹的运动分割光谱聚类方法

Hongbin Wang, Hua Lin
{"title":"基于运动轨迹的运动分割光谱聚类方法","authors":"Hongbin Wang, Hua Lin","doi":"10.1109/ICME.2003.1221736","DOIUrl":null,"url":null,"abstract":"Multibody motion segmentation is important in many computer vision tasks. This paper presents a novel spectral clustering approach to motion segmentation based on motion trajectory. We introduce a new affinity matrix based on the motion trajectory and map the feature points into a low dimensional subspace. The feature points are clustered in this subspace using a graph spectral approach. By computing the sensitivities of the larger eigenvalues of a related Markov transition matrix with respect to perturbations in affinity matrix, we improve the piecewise constant eigenvectors condition [M. Meila et al., 2001] dramatically. This makes clustering much reliable and robust. We confirm it by experiments.","PeriodicalId":118560,"journal":{"name":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A spectral clustering approach to motion segmentation based on motion trajectory\",\"authors\":\"Hongbin Wang, Hua Lin\",\"doi\":\"10.1109/ICME.2003.1221736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multibody motion segmentation is important in many computer vision tasks. This paper presents a novel spectral clustering approach to motion segmentation based on motion trajectory. We introduce a new affinity matrix based on the motion trajectory and map the feature points into a low dimensional subspace. The feature points are clustered in this subspace using a graph spectral approach. By computing the sensitivities of the larger eigenvalues of a related Markov transition matrix with respect to perturbations in affinity matrix, we improve the piecewise constant eigenvectors condition [M. Meila et al., 2001] dramatically. This makes clustering much reliable and robust. We confirm it by experiments.\",\"PeriodicalId\":118560,\"journal\":{\"name\":\"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2003.1221736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2003.1221736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

多体运动分割是许多计算机视觉任务的重要组成部分。提出了一种基于运动轨迹的光谱聚类分割方法。我们引入了一个新的基于运动轨迹的关联矩阵,并将特征点映射到一个低维子空间中。使用图谱方法在该子空间中聚类特征点。通过计算相关马尔可夫转移矩阵的大特征值相对于亲和矩阵中扰动的灵敏度,改进了分段常特征向量条件[M]。Meila et al., 2001]。这使得集群更加可靠和健壮。我们通过实验证实了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spectral clustering approach to motion segmentation based on motion trajectory
Multibody motion segmentation is important in many computer vision tasks. This paper presents a novel spectral clustering approach to motion segmentation based on motion trajectory. We introduce a new affinity matrix based on the motion trajectory and map the feature points into a low dimensional subspace. The feature points are clustered in this subspace using a graph spectral approach. By computing the sensitivities of the larger eigenvalues of a related Markov transition matrix with respect to perturbations in affinity matrix, we improve the piecewise constant eigenvectors condition [M. Meila et al., 2001] dramatically. This makes clustering much reliable and robust. We confirm it by experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信