基于人脸的密码密钥生成模糊保险库

Yongjin Wang, K. Plataniotis
{"title":"基于人脸的密码密钥生成模糊保险库","authors":"Yongjin Wang, K. Plataniotis","doi":"10.1109/BCC.2007.4430549","DOIUrl":null,"url":null,"abstract":"This paper presents a method for changeable cryptographic key generation using face biometrics signal. A previously introduced scheme, fuzzy vault, is utilized for secure binding of randomly generated key with extracted biometrics features. The major technical difficulty is to map noisy biometrics representation to the exactly correct key. In this paper, the proposed method is based on 2-dimensional quantization of distance vectors between biometrics features and pairs of random vectors. A windowing process is applied to tolerate the variations of biometrics signals. Further, we also introduce a two-factor scheme, where the quantized distance vectors are generated with user-dependent random vectors. By integrating a second factor, both the biometrics and the key are changeable, and zero error rate can be obtained.","PeriodicalId":389417,"journal":{"name":"2007 Biometrics Symposium","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Fuzzy Vault for Face Based Cryptographic Key Generation\",\"authors\":\"Yongjin Wang, K. Plataniotis\",\"doi\":\"10.1109/BCC.2007.4430549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for changeable cryptographic key generation using face biometrics signal. A previously introduced scheme, fuzzy vault, is utilized for secure binding of randomly generated key with extracted biometrics features. The major technical difficulty is to map noisy biometrics representation to the exactly correct key. In this paper, the proposed method is based on 2-dimensional quantization of distance vectors between biometrics features and pairs of random vectors. A windowing process is applied to tolerate the variations of biometrics signals. Further, we also introduce a two-factor scheme, where the quantized distance vectors are generated with user-dependent random vectors. By integrating a second factor, both the biometrics and the key are changeable, and zero error rate can be obtained.\",\"PeriodicalId\":389417,\"journal\":{\"name\":\"2007 Biometrics Symposium\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Biometrics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCC.2007.4430549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2007.4430549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

提出了一种利用人脸生物特征信号生成可变密码密钥的方法。之前介绍的模糊保险库方案用于将随机生成的密钥与提取的生物特征进行安全绑定。主要的技术难点是将有噪声的生物特征表示映射到完全正确的密钥。本文提出的方法是基于生物特征特征与随机向量对之间的距离向量的二维量化。采用开窗处理来容忍生物特征信号的变化。此外,我们还引入了一种双因子方案,其中量化的距离向量由用户相关的随机向量生成。通过对第二因子的积分,使得生物特征和密钥都是可变的,从而实现了零错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Vault for Face Based Cryptographic Key Generation
This paper presents a method for changeable cryptographic key generation using face biometrics signal. A previously introduced scheme, fuzzy vault, is utilized for secure binding of randomly generated key with extracted biometrics features. The major technical difficulty is to map noisy biometrics representation to the exactly correct key. In this paper, the proposed method is based on 2-dimensional quantization of distance vectors between biometrics features and pairs of random vectors. A windowing process is applied to tolerate the variations of biometrics signals. Further, we also introduce a two-factor scheme, where the quantized distance vectors are generated with user-dependent random vectors. By integrating a second factor, both the biometrics and the key are changeable, and zero error rate can be obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信