作为自对偶Yang-Mills理论的修正KdV (mKdV)方程的精确解

V. Christianto
{"title":"作为自对偶Yang-Mills理论的修正KdV (mKdV)方程的精确解","authors":"V. Christianto","doi":"10.18052/WWW.SCIPRESS.COM/BSMASS.12.1","DOIUrl":null,"url":null,"abstract":"It is known for quite a long time that Self-Dual Yang Mills (SDYM) theory reduce to KortewegDeVries equation, but recently Shehata and Alzaidy have proved that SDYM reduces to modified KdV equation. Therefore, this paper discusses an exact solution of modified KortewegDeVries equation with Mathematica. An implication of the proposed solution is that it is possible to consider hadrons as (a set of) KdV soliton.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Exact Solution of modified KdV (mKdV) Equation as a reduction of Self-Dual Yang-Mills theory\",\"authors\":\"V. Christianto\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BSMASS.12.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known for quite a long time that Self-Dual Yang Mills (SDYM) theory reduce to KortewegDeVries equation, but recently Shehata and Alzaidy have proved that SDYM reduces to modified KdV equation. Therefore, this paper discusses an exact solution of modified KortewegDeVries equation with Mathematica. An implication of the proposed solution is that it is possible to consider hadrons as (a set of) KdV soliton.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BSMASS.12.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BSMASS.12.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自对偶杨米尔斯(Self-Dual Yang Mills, SDYM)理论一直被认为可以简化为KortewegDeVries方程,但最近Shehata和Alzaidy证明了SDYM可以简化为修正的KdV方程。因此,本文用Mathematica软件讨论了修正KortewegDeVries方程的精确解。所提出的解决方案的一个含义是,可以将强子视为(一组)KdV孤子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Exact Solution of modified KdV (mKdV) Equation as a reduction of Self-Dual Yang-Mills theory
It is known for quite a long time that Self-Dual Yang Mills (SDYM) theory reduce to KortewegDeVries equation, but recently Shehata and Alzaidy have proved that SDYM reduces to modified KdV equation. Therefore, this paper discusses an exact solution of modified KortewegDeVries equation with Mathematica. An implication of the proposed solution is that it is possible to consider hadrons as (a set of) KdV soliton.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信