机器人辅助椎板切除术过程中基于视频序列图像的骨层感知*

Hai-ying Li, Meng Li, Xiaozhi Qi, Yuanyuan Yang, Ying Hu
{"title":"机器人辅助椎板切除术过程中基于视频序列图像的骨层感知*","authors":"Hai-ying Li, Meng Li, Xiaozhi Qi, Yuanyuan Yang, Ying Hu","doi":"10.1109/ROBIO55434.2022.10011970","DOIUrl":null,"url":null,"abstract":"To optimize the operation ability of the autonomous robot under the background of complex surgery, this paper extracted the state features of milling video sequence images to realize bone layer perception and improve the perception ability of the spinal robot. The bone layer sensing algorithm mainly consists of four parts: improved moving object detection algorithm, moving object tracking algorithm, state feature extraction algorithm and bone layer recognition algorithm. Aiming at the shortcomings of the existing moving target detection methods, this paper proposes an improved moving target detection algorithm based on the existing Background Subtractor MOG algorithm, which is suitable for milling video sequences. The grinding machine state obtained by the improved algorithm is used as the input of the moving target tracking algorithm, and the kernel correlation filter (KCF) is used to realize the target tracking. According to the tracking of the moving target, the state features of the milling area are extracted and the bone layer is identified, so as to realize the bone layer perception in the milling process.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone Layer Perception in Milling Process Based on Video Sequence Images during Robot-assisted Laminectomy*\",\"authors\":\"Hai-ying Li, Meng Li, Xiaozhi Qi, Yuanyuan Yang, Ying Hu\",\"doi\":\"10.1109/ROBIO55434.2022.10011970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To optimize the operation ability of the autonomous robot under the background of complex surgery, this paper extracted the state features of milling video sequence images to realize bone layer perception and improve the perception ability of the spinal robot. The bone layer sensing algorithm mainly consists of four parts: improved moving object detection algorithm, moving object tracking algorithm, state feature extraction algorithm and bone layer recognition algorithm. Aiming at the shortcomings of the existing moving target detection methods, this paper proposes an improved moving target detection algorithm based on the existing Background Subtractor MOG algorithm, which is suitable for milling video sequences. The grinding machine state obtained by the improved algorithm is used as the input of the moving target tracking algorithm, and the kernel correlation filter (KCF) is used to realize the target tracking. According to the tracking of the moving target, the state features of the milling area are extracted and the bone layer is identified, so as to realize the bone layer perception in the milling process.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10011970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了优化自主机器人在复杂手术背景下的操作能力,本文提取铣削视频序列图像的状态特征,实现骨层感知,提高脊柱机器人的感知能力。骨层感知算法主要由四部分组成:改进的运动目标检测算法、运动目标跟踪算法、状态特征提取算法和骨层识别算法。针对现有运动目标检测方法的不足,本文在现有背景减法MOG算法的基础上,提出了一种适用于铣削视频序列的改进运动目标检测算法。将改进算法得到的磨床状态作为运动目标跟踪算法的输入,利用核相关滤波器(KCF)实现目标跟踪。根据对运动目标的跟踪,提取铣削区域的状态特征,识别骨层,实现铣削过程中的骨层感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bone Layer Perception in Milling Process Based on Video Sequence Images during Robot-assisted Laminectomy*
To optimize the operation ability of the autonomous robot under the background of complex surgery, this paper extracted the state features of milling video sequence images to realize bone layer perception and improve the perception ability of the spinal robot. The bone layer sensing algorithm mainly consists of four parts: improved moving object detection algorithm, moving object tracking algorithm, state feature extraction algorithm and bone layer recognition algorithm. Aiming at the shortcomings of the existing moving target detection methods, this paper proposes an improved moving target detection algorithm based on the existing Background Subtractor MOG algorithm, which is suitable for milling video sequences. The grinding machine state obtained by the improved algorithm is used as the input of the moving target tracking algorithm, and the kernel correlation filter (KCF) is used to realize the target tracking. According to the tracking of the moving target, the state features of the milling area are extracted and the bone layer is identified, so as to realize the bone layer perception in the milling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信