风速预报中不同学习方法的简要比较

Héctor Rodríguez Rangel, Jose Misael Burruel Zazueta, Rafael Imperial Rojo, V. Huitron, Gloria Ekaterine Peralta Peñuñuri
{"title":"风速预报中不同学习方法的简要比较","authors":"Héctor Rodríguez Rangel, Jose Misael Burruel Zazueta, Rafael Imperial Rojo, V. Huitron, Gloria Ekaterine Peralta Peñuñuri","doi":"10.1109/ROPEC50909.2020.9258733","DOIUrl":null,"url":null,"abstract":"Obtaining clean energy through wind farms is considered viable because of its low operating cost. However, the wind speed behavior is not constant, it has a chaotic behavior, and it is highly data-dependent. The present work aims to carry out a comparison of several short-term wind forecasts using Artificial Intelligence models such as Artificial Neural Networks (ANN), Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), and Large Short-Term Memory Networks (LSTM). We discuss several scenarios where the models are contrasted, analyzing the advantages and disadvantages of using these strategies to decide the viability of building a wind farm in the analyzed place.","PeriodicalId":177447,"journal":{"name":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A brief comparison of different learning methods for wind speed forecasting\",\"authors\":\"Héctor Rodríguez Rangel, Jose Misael Burruel Zazueta, Rafael Imperial Rojo, V. Huitron, Gloria Ekaterine Peralta Peñuñuri\",\"doi\":\"10.1109/ROPEC50909.2020.9258733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obtaining clean energy through wind farms is considered viable because of its low operating cost. However, the wind speed behavior is not constant, it has a chaotic behavior, and it is highly data-dependent. The present work aims to carry out a comparison of several short-term wind forecasts using Artificial Intelligence models such as Artificial Neural Networks (ANN), Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), and Large Short-Term Memory Networks (LSTM). We discuss several scenarios where the models are contrasted, analyzing the advantages and disadvantages of using these strategies to decide the viability of building a wind farm in the analyzed place.\",\"PeriodicalId\":177447,\"journal\":{\"name\":\"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC50909.2020.9258733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC50909.2020.9258733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过风力发电场获得清洁能源被认为是可行的,因为它的低运营成本。然而,风速行为不是恒定的,它具有混沌行为,并且高度依赖于数据。目前的工作旨在使用人工智能模型(如人工神经网络(ANN)、多层感知器(MLP)、卷积神经网络(CNN)和大型短期记忆网络(LSTM))对几种短期风预报进行比较。我们讨论了几种情况,其中模型进行了对比,分析了使用这些策略来决定在分析的地方建立风电场的可行性的利弊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A brief comparison of different learning methods for wind speed forecasting
Obtaining clean energy through wind farms is considered viable because of its low operating cost. However, the wind speed behavior is not constant, it has a chaotic behavior, and it is highly data-dependent. The present work aims to carry out a comparison of several short-term wind forecasts using Artificial Intelligence models such as Artificial Neural Networks (ANN), Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), and Large Short-Term Memory Networks (LSTM). We discuss several scenarios where the models are contrasted, analyzing the advantages and disadvantages of using these strategies to decide the viability of building a wind farm in the analyzed place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信