{"title":"在dsp板上嵌入量子密码","authors":"R. Lieger, T. Lorünser, G. Humer, F. Schupfer","doi":"10.5281/ZENODO.38365","DOIUrl":null,"url":null,"abstract":"Quantum cryptography is the only system for key generation that can provably not be tampered by an eavesdropper without being noticed. While its theoretical basis is already reasonably well understood, commercial application is hampered by the lack of ready-to-use embedded encryption systems. In this paper we will describe our hardware solution, developed for setting up an application oriented quantum cryptography embedded-system.","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Embedding quantum cryptography on DSP-boards\",\"authors\":\"R. Lieger, T. Lorünser, G. Humer, F. Schupfer\",\"doi\":\"10.5281/ZENODO.38365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum cryptography is the only system for key generation that can provably not be tampered by an eavesdropper without being noticed. While its theoretical basis is already reasonably well understood, commercial application is hampered by the lack of ready-to-use embedded encryption systems. In this paper we will describe our hardware solution, developed for setting up an application oriented quantum cryptography embedded-system.\",\"PeriodicalId\":347658,\"journal\":{\"name\":\"2004 12th European Signal Processing Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 12th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.38365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum cryptography is the only system for key generation that can provably not be tampered by an eavesdropper without being noticed. While its theoretical basis is already reasonably well understood, commercial application is hampered by the lack of ready-to-use embedded encryption systems. In this paper we will describe our hardware solution, developed for setting up an application oriented quantum cryptography embedded-system.