序列并行图上最小边排序生成树问题的np -完备性

A. Arefin, M.A. Kashem Mia
{"title":"序列并行图上最小边排序生成树问题的np -完备性","authors":"A. Arefin, M.A. Kashem Mia","doi":"10.1109/ICCITECHN.2007.4579371","DOIUrl":null,"url":null,"abstract":"The minimum edge-ranking spanning tree (MERST) problem on a graph is to find a spanning tree of G whose edge-ranking needs least number of ranks. Although polynomial-time algorithm to solve the minimum edge-ranking spanning tree problem on series-parallel graphs with bounded degrees has been found, but for the unbounded degrees no polynomial-time algorithm is known. In this paper, we prove that the minimum edge-ranking spanning tree problem on general series-parallel graph is NP-complete.","PeriodicalId":338170,"journal":{"name":"2007 10th international conference on computer and information technology","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"NP-Completeness of the minimum edge-ranking spanning tree problem on series-parallel graphs\",\"authors\":\"A. Arefin, M.A. Kashem Mia\",\"doi\":\"10.1109/ICCITECHN.2007.4579371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum edge-ranking spanning tree (MERST) problem on a graph is to find a spanning tree of G whose edge-ranking needs least number of ranks. Although polynomial-time algorithm to solve the minimum edge-ranking spanning tree problem on series-parallel graphs with bounded degrees has been found, but for the unbounded degrees no polynomial-time algorithm is known. In this paper, we prove that the minimum edge-ranking spanning tree problem on general series-parallel graph is NP-complete.\",\"PeriodicalId\":338170,\"journal\":{\"name\":\"2007 10th international conference on computer and information technology\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th international conference on computer and information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2007.4579371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th international conference on computer and information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2007.4579371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

图上的最小边排序生成树MERST (minimum edge-ranking spanning tree)问题是寻找一棵边排序所需的秩数最少的G生成树。虽然已经找到了求解有界度序列并行图上最小边排序生成树问题的多项式时间算法,但对于无界度序列并行图,还没有多项式时间算法。本文证明了一般序列-并行图上的最小边排序生成树问题是np完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NP-Completeness of the minimum edge-ranking spanning tree problem on series-parallel graphs
The minimum edge-ranking spanning tree (MERST) problem on a graph is to find a spanning tree of G whose edge-ranking needs least number of ranks. Although polynomial-time algorithm to solve the minimum edge-ranking spanning tree problem on series-parallel graphs with bounded degrees has been found, but for the unbounded degrees no polynomial-time algorithm is known. In this paper, we prove that the minimum edge-ranking spanning tree problem on general series-parallel graph is NP-complete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信