基于逻辑映射的不规则无线传感器网络鲁棒数据压缩

T. Dang, N. Bulusu, W. Feng
{"title":"基于逻辑映射的不规则无线传感器网络鲁棒数据压缩","authors":"T. Dang, N. Bulusu, W. Feng","doi":"10.1155/2013/253257","DOIUrl":null,"url":null,"abstract":"We propose RIDA, a novel robust information-driven data compression architecture for distributed wireless sensor networks. The key idea is to determine the data correlation among a group of sensors based on the data values to significantly improve compression performance rather than relying solely on spatial data correlation. A logical mapping approach assigns virtual indices to nodes based on the data content, which enables simple implementation of data transformation on resource-constrained nodes without any other information. We evaluate RIDA with both discrete cosine transform (DCT) and discrete wavelet transform (DWT) on publicly available real-world data sets. Our experiments show that 30% of energy and 80–95% of bandwidth can be saved for typical multihop data networks. Moreover, the original data can be retrieved after decompression with a low error of about 3%. In particular, for one state-of-the-art distributed data compression algorithm for sensor networks, we show that the compression ratio is doubled by using logical mapping while maintaining comparable mean square error. Furthermore, we also propose a mechanism to detect and classify missing or faulty nodes, showing accuracy and recall of 95% when half of the nodes in the network are missing or faulty.","PeriodicalId":314840,"journal":{"name":"ISRN Sensor Networks","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Robust Data Compression for Irregular Wireless Sensor Networks Using Logical Mapping\",\"authors\":\"T. Dang, N. Bulusu, W. Feng\",\"doi\":\"10.1155/2013/253257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose RIDA, a novel robust information-driven data compression architecture for distributed wireless sensor networks. The key idea is to determine the data correlation among a group of sensors based on the data values to significantly improve compression performance rather than relying solely on spatial data correlation. A logical mapping approach assigns virtual indices to nodes based on the data content, which enables simple implementation of data transformation on resource-constrained nodes without any other information. We evaluate RIDA with both discrete cosine transform (DCT) and discrete wavelet transform (DWT) on publicly available real-world data sets. Our experiments show that 30% of energy and 80–95% of bandwidth can be saved for typical multihop data networks. Moreover, the original data can be retrieved after decompression with a low error of about 3%. In particular, for one state-of-the-art distributed data compression algorithm for sensor networks, we show that the compression ratio is doubled by using logical mapping while maintaining comparable mean square error. Furthermore, we also propose a mechanism to detect and classify missing or faulty nodes, showing accuracy and recall of 95% when half of the nodes in the network are missing or faulty.\",\"PeriodicalId\":314840,\"journal\":{\"name\":\"ISRN Sensor Networks\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISRN Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/253257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/253257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们提出了一种新的健壮的信息驱动数据压缩架构RIDA,用于分布式无线传感器网络。其关键思想是根据数据值确定一组传感器之间的数据相关性,以显著提高压缩性能,而不是仅仅依赖于空间数据相关性。逻辑映射方法根据数据内容为节点分配虚拟索引,从而可以在资源受限的节点上简单地实现数据转换,而不需要任何其他信息。我们用离散余弦变换(DCT)和离散小波变换(DWT)在公开可用的真实世界数据集上评估RIDA。我们的实验表明,对于典型的多跳数据网络,可以节省30%的能量和80-95%的带宽。此外,解压缩后的原始数据可以恢复,误差在3%左右。特别是,对于传感器网络的一种最先进的分布式数据压缩算法,我们表明,通过使用逻辑映射,压缩比翻了一番,同时保持相当的均方误差。此外,我们还提出了一种检测和分类缺失或故障节点的机制,当网络中一半的节点缺失或故障时,准确率和召回率达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Data Compression for Irregular Wireless Sensor Networks Using Logical Mapping
We propose RIDA, a novel robust information-driven data compression architecture for distributed wireless sensor networks. The key idea is to determine the data correlation among a group of sensors based on the data values to significantly improve compression performance rather than relying solely on spatial data correlation. A logical mapping approach assigns virtual indices to nodes based on the data content, which enables simple implementation of data transformation on resource-constrained nodes without any other information. We evaluate RIDA with both discrete cosine transform (DCT) and discrete wavelet transform (DWT) on publicly available real-world data sets. Our experiments show that 30% of energy and 80–95% of bandwidth can be saved for typical multihop data networks. Moreover, the original data can be retrieved after decompression with a low error of about 3%. In particular, for one state-of-the-art distributed data compression algorithm for sensor networks, we show that the compression ratio is doubled by using logical mapping while maintaining comparable mean square error. Furthermore, we also propose a mechanism to detect and classify missing or faulty nodes, showing accuracy and recall of 95% when half of the nodes in the network are missing or faulty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信