利用布尔异或的反转生成可取消生物特征模板

Manisha, Nitin Kumar
{"title":"利用布尔异或的反转生成可取消生物特征模板","authors":"Manisha, Nitin Kumar","doi":"10.1109/ICONC345789.2020.9117459","DOIUrl":null,"url":null,"abstract":"Cancelable Biometric is repetitive distortion embedded in original Biometric image for keeping it secure from unauthorized access. In this paper, we have generated Cancelable Biometric templates with Reverse Boolean XOR technique. Three different methods have been proposed for generation of Cancelable Biometric templates based on Visual Secret Sharing scheme. In each method, one Secret image and n-1 Cover images are used as: (M1) One original Biometric image (Secret) with n- 1 randomly chosen Gray Cover images (M2) One original Secret image with n-1 Cover images, which are Randomly Permuted version of the original Secret image (M3) One Secret image with n-1 Cover images, both Secret image and Cover images are Randomly Permuted version of original Biometric image. Experiment works have performed on publicly available ORL Face database and IIT Delhi Iris database. The performance of the proposed methods is compared in terms of Co-relation Coefficient (Cr), Mean Square Error (MSE), Mean Absolute Error (MAE), Structural Similarity (SSIM), Peak Signal to Noise Ratio (PSNR), Number of Pixel Change Rate (NPCR), and Unified Average Changing Intensity (UACI). It is found that among the three proposed method, M3 generates good quality Cancelable templates and gives best performance in terms of quality. M3 is also better in quantitative terms on ORL dataset while M2 and M3 are comparable on IIT Delhi Iris dataset.","PeriodicalId":155813,"journal":{"name":"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Generating Cancelable Biometric Template using Reverse of Boolean XOR\",\"authors\":\"Manisha, Nitin Kumar\",\"doi\":\"10.1109/ICONC345789.2020.9117459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancelable Biometric is repetitive distortion embedded in original Biometric image for keeping it secure from unauthorized access. In this paper, we have generated Cancelable Biometric templates with Reverse Boolean XOR technique. Three different methods have been proposed for generation of Cancelable Biometric templates based on Visual Secret Sharing scheme. In each method, one Secret image and n-1 Cover images are used as: (M1) One original Biometric image (Secret) with n- 1 randomly chosen Gray Cover images (M2) One original Secret image with n-1 Cover images, which are Randomly Permuted version of the original Secret image (M3) One Secret image with n-1 Cover images, both Secret image and Cover images are Randomly Permuted version of original Biometric image. Experiment works have performed on publicly available ORL Face database and IIT Delhi Iris database. The performance of the proposed methods is compared in terms of Co-relation Coefficient (Cr), Mean Square Error (MSE), Mean Absolute Error (MAE), Structural Similarity (SSIM), Peak Signal to Noise Ratio (PSNR), Number of Pixel Change Rate (NPCR), and Unified Average Changing Intensity (UACI). It is found that among the three proposed method, M3 generates good quality Cancelable templates and gives best performance in terms of quality. M3 is also better in quantitative terms on ORL dataset while M2 and M3 are comparable on IIT Delhi Iris dataset.\",\"PeriodicalId\":155813,\"journal\":{\"name\":\"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONC345789.2020.9117459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONC345789.2020.9117459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

可取消生物特征是在原始生物特征图像中嵌入的重复失真,以防止未经授权的访问。在本文中,我们使用反向布尔异或技术生成了可取消的生物特征模板。提出了三种基于可视化秘密共享方案的可取消生物特征模板生成方法。在每种方法中,使用1张Secret图像和n-1张Cover图像作为:(M1) 1张原始生物特征图像(Secret),随机选择n-1张灰色封面图像(M2) 1张原始Secret图像,随机选择n-1张封面图像(M3) 1张Secret图像,随机选择n-1张封面图像,秘密图像和封面图像都是原始生物特征图像的随机排列版本。实验工作在公开可用的ORL人脸数据库和印度理工学院德里分校Iris数据库上进行。从相关系数(Cr)、均方误差(MSE)、平均绝对误差(MAE)、结构相似性(SSIM)、峰值信噪比(PSNR)、像素数变化率(NPCR)和统一平均变化强度(UACI)等方面对所提出方法的性能进行了比较。结果表明,在三种方法中,M3生成的可取消模板质量较好,在质量方面表现最好。M3在ORL数据集的定量方面也更好,而M2和M3在IIT德里Iris数据集上是可比较的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Generating Cancelable Biometric Template using Reverse of Boolean XOR
Cancelable Biometric is repetitive distortion embedded in original Biometric image for keeping it secure from unauthorized access. In this paper, we have generated Cancelable Biometric templates with Reverse Boolean XOR technique. Three different methods have been proposed for generation of Cancelable Biometric templates based on Visual Secret Sharing scheme. In each method, one Secret image and n-1 Cover images are used as: (M1) One original Biometric image (Secret) with n- 1 randomly chosen Gray Cover images (M2) One original Secret image with n-1 Cover images, which are Randomly Permuted version of the original Secret image (M3) One Secret image with n-1 Cover images, both Secret image and Cover images are Randomly Permuted version of original Biometric image. Experiment works have performed on publicly available ORL Face database and IIT Delhi Iris database. The performance of the proposed methods is compared in terms of Co-relation Coefficient (Cr), Mean Square Error (MSE), Mean Absolute Error (MAE), Structural Similarity (SSIM), Peak Signal to Noise Ratio (PSNR), Number of Pixel Change Rate (NPCR), and Unified Average Changing Intensity (UACI). It is found that among the three proposed method, M3 generates good quality Cancelable templates and gives best performance in terms of quality. M3 is also better in quantitative terms on ORL dataset while M2 and M3 are comparable on IIT Delhi Iris dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信