结合几何和光度信息,从步进边缘检测找到线

Alain Filbois
{"title":"结合几何和光度信息,从步进边缘检测找到线","authors":"Alain Filbois","doi":"10.1109/TAI.1994.346396","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of detecting both step and line edges using a classical step edge detector. As a gradient detector produces two extrema when applied to a line, we propose a method which is based on such a detector but which appropriately responds to both step and line edges. The idea is first to identify line contours using geometric and photometric properties and second to substitute a line for a single contour using a skeletonization algorithm.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining geometric and photometric information to find lines from step edge detection\",\"authors\":\"Alain Filbois\",\"doi\":\"10.1109/TAI.1994.346396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of detecting both step and line edges using a classical step edge detector. As a gradient detector produces two extrema when applied to a line, we propose a method which is based on such a detector but which appropriately responds to both step and line edges. The idea is first to identify line contours using geometric and photometric properties and second to substitute a line for a single contour using a skeletonization algorithm.<<ETX>>\",\"PeriodicalId\":262014,\"journal\":{\"name\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1994.346396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了用经典的阶跃边缘检测器同时检测阶跃边缘和直线边缘的问题。由于梯度检测器在应用于一条线时会产生两个极值,我们提出了一种基于这种检测器的方法,但它可以适当地响应步长和线的边缘。这个想法首先是使用几何和光度属性来识别线条轮廓,其次是使用骨架化算法来替换单个轮廓的线条。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining geometric and photometric information to find lines from step edge detection
This paper deals with the problem of detecting both step and line edges using a classical step edge detector. As a gradient detector produces two extrema when applied to a line, we propose a method which is based on such a detector but which appropriately responds to both step and line edges. The idea is first to identify line contours using geometric and photometric properties and second to substitute a line for a single contour using a skeletonization algorithm.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信