基于深度卷积网络特征的热量消耗估算

Baodong Wang, L. Tao, T. Burghardt, M. Mirmehdi
{"title":"基于深度卷积网络特征的热量消耗估算","authors":"Baodong Wang, L. Tao, T. Burghardt, M. Mirmehdi","doi":"10.1109/WACVW.2018.00014","DOIUrl":null,"url":null,"abstract":"Accurately estimating a person's energy expenditure is an important tool in tracking physical activity levels for healthcare and sports monitoring tasks, amongst other applications. In this paper, we propose a method for deriving calorific expenditure based on deep convolutional neural network features (within a healthcare scenario). Our evaluation shows that the proposed approach gives high accuracy in activity recognition (82.3%) and low normalised root mean square error in calorific expenditure prediction (0.41). It is compared against the current state-ofthe-art calorific expenditure estimation method, based on a classical approach, and exhibits an improvement of 7.8% in the calorific expenditure prediction task. The proposed method is suitable for home monitoring in a controlled environment.","PeriodicalId":301220,"journal":{"name":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Calorific Expenditure Estimation Using Deep Convolutional Network Features\",\"authors\":\"Baodong Wang, L. Tao, T. Burghardt, M. Mirmehdi\",\"doi\":\"10.1109/WACVW.2018.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately estimating a person's energy expenditure is an important tool in tracking physical activity levels for healthcare and sports monitoring tasks, amongst other applications. In this paper, we propose a method for deriving calorific expenditure based on deep convolutional neural network features (within a healthcare scenario). Our evaluation shows that the proposed approach gives high accuracy in activity recognition (82.3%) and low normalised root mean square error in calorific expenditure prediction (0.41). It is compared against the current state-ofthe-art calorific expenditure estimation method, based on a classical approach, and exhibits an improvement of 7.8% in the calorific expenditure prediction task. The proposed method is suitable for home monitoring in a controlled environment.\",\"PeriodicalId\":301220,\"journal\":{\"name\":\"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2018.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2018.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

准确估计一个人的能量消耗是跟踪医疗保健和运动监测任务的身体活动水平的重要工具,以及其他应用。在本文中,我们提出了一种基于深度卷积神经网络特征的热量消耗方法(在医疗保健场景中)。我们的评估表明,所提出的方法在活动识别方面具有较高的准确性(82.3%),在热量消耗预测方面具有较低的归一化均方根误差(0.41)。与目前基于经典方法的最先进的热量消耗估算方法相比,该方法在热量消耗预测任务中提高了7.8%。该方法适用于受控环境下的家庭监控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calorific Expenditure Estimation Using Deep Convolutional Network Features
Accurately estimating a person's energy expenditure is an important tool in tracking physical activity levels for healthcare and sports monitoring tasks, amongst other applications. In this paper, we propose a method for deriving calorific expenditure based on deep convolutional neural network features (within a healthcare scenario). Our evaluation shows that the proposed approach gives high accuracy in activity recognition (82.3%) and low normalised root mean square error in calorific expenditure prediction (0.41). It is compared against the current state-ofthe-art calorific expenditure estimation method, based on a classical approach, and exhibits an improvement of 7.8% in the calorific expenditure prediction task. The proposed method is suitable for home monitoring in a controlled environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信