稀疏对称正定系统并行解的一种新的双向Cholesky分解算法

K. Murthy, C. Murthy
{"title":"稀疏对称正定系统并行解的一种新的双向Cholesky分解算法","authors":"K. Murthy, C. Murthy","doi":"10.1142/S0129053397000064","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of solving sparse linear systems occurring in finite difference applications (or N × N grid problems, N being the size of the linear system). We propose a new algorithm for the problem which is based on the Cholesky factorization, a symmetric variant of Gaussian elimination tailored to symmetric positive definite systems. The algorithm employs a new technique called bidirectional factorization to produce the complete solution vector by solving only one triangular system against two triangular systems in the existing Cholesky factorization after the factorization phase. The effectiveness of the new algorithm is demonstrated by comparing its performance with that of the existing Cholesky factorization for solving regular finite difference grid problems on hypercube multiprocessors.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Bidirectional Cholesky Factorization Algorithm for Parallel Solution of Sparse Symmetric Positive Definite Systems\",\"authors\":\"K. Murthy, C. Murthy\",\"doi\":\"10.1142/S0129053397000064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of solving sparse linear systems occurring in finite difference applications (or N × N grid problems, N being the size of the linear system). We propose a new algorithm for the problem which is based on the Cholesky factorization, a symmetric variant of Gaussian elimination tailored to symmetric positive definite systems. The algorithm employs a new technique called bidirectional factorization to produce the complete solution vector by solving only one triangular system against two triangular systems in the existing Cholesky factorization after the factorization phase. The effectiveness of the new algorithm is demonstrated by comparing its performance with that of the existing Cholesky factorization for solving regular finite difference grid problems on hypercube multiprocessors.\",\"PeriodicalId\":270006,\"journal\":{\"name\":\"Int. J. High Speed Comput.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. High Speed Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129053397000064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129053397000064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑求解有限差分应用中出现的稀疏线性系统问题(或N × N网格问题,N为线性系统的大小)。我们提出了一种基于Cholesky分解的新算法,这是一种适合于对称正定系统的高斯消去法的对称变体。该算法采用双向分解的新技术,在分解阶段后,对现有的Cholesky分解中的两个三角形系统只求解一个三角形系统,从而产生完全解向量。通过将新算法与现有的Cholesky分解算法在超立方体多处理器上求解正则有限差分网格问题的性能进行比较,证明了新算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Bidirectional Cholesky Factorization Algorithm for Parallel Solution of Sparse Symmetric Positive Definite Systems
In this paper, we consider the problem of solving sparse linear systems occurring in finite difference applications (or N × N grid problems, N being the size of the linear system). We propose a new algorithm for the problem which is based on the Cholesky factorization, a symmetric variant of Gaussian elimination tailored to symmetric positive definite systems. The algorithm employs a new technique called bidirectional factorization to produce the complete solution vector by solving only one triangular system against two triangular systems in the existing Cholesky factorization after the factorization phase. The effectiveness of the new algorithm is demonstrated by comparing its performance with that of the existing Cholesky factorization for solving regular finite difference grid problems on hypercube multiprocessors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信