重新考虑复杂的分支预测器

Daniel A. Jiménez
{"title":"重新考虑复杂的分支预测器","authors":"Daniel A. Jiménez","doi":"10.1109/HPCA.2003.1183523","DOIUrl":null,"url":null,"abstract":"To sustain instruction throughput rates in more aggressively clocked microarchitectures, microarchitects have incorporated larger and more complex branch predictors into their designs, taking advantage of the increasing numbers of transistors available on a chip. Unfortunately, because of penalties associated with their implementations, the extra accuracy provided by many branch predictors does not produce a proportionate increase in performance. Specifically, we show that the techniques used to hide the latency of a large and complex branch predictor do not scale well and will be unable to sustain IPC for deeper pipelines. We investigate a different way to build large branch predictors. We propose an alternative predictor design that completely hides predictor latency so that accuracy and hardware budget are the only factors that affect the efficiency of the predictor. Our simple design allows the predictor to be pipelined efficiently by avoiding difficulties introduced by complex predictors. Because this predictor eliminates the penalties associated with complex predictors, overall performance exceeds that of even the most accurate known branch predictors in the literature at large hardware budgets. We conclude that as chip densities increase in the next several years, the accuracy of complex branch predictors must be weighed against the performance benefits of simple branch predictors.","PeriodicalId":150992,"journal":{"name":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Reconsidering complex branch predictors\",\"authors\":\"Daniel A. Jiménez\",\"doi\":\"10.1109/HPCA.2003.1183523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To sustain instruction throughput rates in more aggressively clocked microarchitectures, microarchitects have incorporated larger and more complex branch predictors into their designs, taking advantage of the increasing numbers of transistors available on a chip. Unfortunately, because of penalties associated with their implementations, the extra accuracy provided by many branch predictors does not produce a proportionate increase in performance. Specifically, we show that the techniques used to hide the latency of a large and complex branch predictor do not scale well and will be unable to sustain IPC for deeper pipelines. We investigate a different way to build large branch predictors. We propose an alternative predictor design that completely hides predictor latency so that accuracy and hardware budget are the only factors that affect the efficiency of the predictor. Our simple design allows the predictor to be pipelined efficiently by avoiding difficulties introduced by complex predictors. Because this predictor eliminates the penalties associated with complex predictors, overall performance exceeds that of even the most accurate known branch predictors in the literature at large hardware budgets. We conclude that as chip densities increase in the next several years, the accuracy of complex branch predictors must be weighed against the performance benefits of simple branch predictors.\",\"PeriodicalId\":150992,\"journal\":{\"name\":\"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2003.1183523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2003.1183523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

为了在更积极的微体系结构中维持指令吞吐率,微架构师在他们的设计中加入了更大、更复杂的分支预测器,利用芯片上可用的晶体管数量不断增加的优势。不幸的是,由于与它们的实现相关的惩罚,许多分支预测器提供的额外准确性并没有产生相应的性能提高。具体来说,我们表明用于隐藏大型复杂分支预测器延迟的技术不能很好地扩展,并且无法维持更深管道的IPC。我们研究了一种不同的方法来构建大型分支预测器。我们提出了一种替代的预测器设计,它完全隐藏了预测器延迟,因此准确性和硬件预算是影响预测器效率的唯一因素。我们的简单设计允许预测器通过避免复杂预测器引入的困难而有效地流水线化。因为这个预测器消除了与复杂预测器相关的损失,所以在大型硬件预算下,总体性能甚至超过了文献中已知最准确的分支预测器。我们得出结论,随着芯片密度在未来几年的增加,复杂分支预测器的准确性必须与简单分支预测器的性能优势进行权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconsidering complex branch predictors
To sustain instruction throughput rates in more aggressively clocked microarchitectures, microarchitects have incorporated larger and more complex branch predictors into their designs, taking advantage of the increasing numbers of transistors available on a chip. Unfortunately, because of penalties associated with their implementations, the extra accuracy provided by many branch predictors does not produce a proportionate increase in performance. Specifically, we show that the techniques used to hide the latency of a large and complex branch predictor do not scale well and will be unable to sustain IPC for deeper pipelines. We investigate a different way to build large branch predictors. We propose an alternative predictor design that completely hides predictor latency so that accuracy and hardware budget are the only factors that affect the efficiency of the predictor. Our simple design allows the predictor to be pipelined efficiently by avoiding difficulties introduced by complex predictors. Because this predictor eliminates the penalties associated with complex predictors, overall performance exceeds that of even the most accurate known branch predictors in the literature at large hardware budgets. We conclude that as chip densities increase in the next several years, the accuracy of complex branch predictors must be weighed against the performance benefits of simple branch predictors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信