Gopal Pandurangan, Peter Robinson, Michele Scquizzato
{"title":"最小生成树的时间和消息最优分布式算法","authors":"Gopal Pandurangan, Peter Robinson, Michele Scquizzato","doi":"10.1145/3365005","DOIUrl":null,"url":null,"abstract":"This article presents a randomized (Las Vegas) distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in Õ(D + √ n) time and exchanges Õ(m) messages (both with high probability), where n is the number of nodes of the network, D is the hop-diameter, and m is the number of edges. This is the first distributed MST algorithm that matches simultaneously the time lower bound of Ω˜(D + √ n) [10] and the message lower bound of Ω (m) [31], which both apply to randomized Monte Carlo algorithms. The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower-bound construction that shows one lower bound does not work for the other. To complement our algorithm, we present a new lower-bound graph construction for which any distributed MST algorithm requires both Ω˜(D + √ n) rounds and Ω (m) messages.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees\",\"authors\":\"Gopal Pandurangan, Peter Robinson, Michele Scquizzato\",\"doi\":\"10.1145/3365005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a randomized (Las Vegas) distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in Õ(D + √ n) time and exchanges Õ(m) messages (both with high probability), where n is the number of nodes of the network, D is the hop-diameter, and m is the number of edges. This is the first distributed MST algorithm that matches simultaneously the time lower bound of Ω˜(D + √ n) [10] and the message lower bound of Ω (m) [31], which both apply to randomized Monte Carlo algorithms. The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower-bound construction that shows one lower bound does not work for the other. To complement our algorithm, we present a new lower-bound graph construction for which any distributed MST algorithm requires both Ω˜(D + √ n) rounds and Ω (m) messages.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3365005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees
This article presents a randomized (Las Vegas) distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in Õ(D + √ n) time and exchanges Õ(m) messages (both with high probability), where n is the number of nodes of the network, D is the hop-diameter, and m is the number of edges. This is the first distributed MST algorithm that matches simultaneously the time lower bound of Ω˜(D + √ n) [10] and the message lower bound of Ω (m) [31], which both apply to randomized Monte Carlo algorithms. The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower-bound construction that shows one lower bound does not work for the other. To complement our algorithm, we present a new lower-bound graph construction for which any distributed MST algorithm requires both Ω˜(D + √ n) rounds and Ω (m) messages.