ArchiMeDe @ DANKMEMES:模因检测的新模型架构

Jinen Setpal, Gabriele Sarti
{"title":"ArchiMeDe @ DANKMEMES:模因检测的新模型架构","authors":"Jinen Setpal, Gabriele Sarti","doi":"10.4000/BOOKS.AACCADEMIA.7405","DOIUrl":null,"url":null,"abstract":"English. We introduce ArchiMeDe, a multimodal neural network-based architecture used to solve the DANKMEMES meme detections subtask at the 2020 EVALITA campaign. The system incor-porates information from visual and textual sources through a multimodal neural ensemble to predict if input images and their respective metadata are memes or not. Each pre-trained neural network in the ensemble is first fine-tuned indi-vidually on the training dataset to perform domain adaptation. Learned text and visual representations are then concatenated to obtain a single multimodal embedding","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ArchiMeDe @ DANKMEMES: A New Model Architecture for Meme Detection\",\"authors\":\"Jinen Setpal, Gabriele Sarti\",\"doi\":\"10.4000/BOOKS.AACCADEMIA.7405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"English. We introduce ArchiMeDe, a multimodal neural network-based architecture used to solve the DANKMEMES meme detections subtask at the 2020 EVALITA campaign. The system incor-porates information from visual and textual sources through a multimodal neural ensemble to predict if input images and their respective metadata are memes or not. Each pre-trained neural network in the ensemble is first fine-tuned indi-vidually on the training dataset to perform domain adaptation. Learned text and visual representations are then concatenated to obtain a single multimodal embedding\",\"PeriodicalId\":184564,\"journal\":{\"name\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/BOOKS.AACCADEMIA.7405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

英语。我们介绍了ArchiMeDe,这是一种基于多模态神经网络的架构,用于解决2020年EVALITA竞选中的DANKMEMES模因检测子任务。该系统通过多模态神经系统集成来自视觉和文本来源的信息,以预测输入图像及其各自的元数据是否为模因。集成中的每个预训练神经网络首先在训练数据集上单独微调以执行域适应。然后将学习到的文本和视觉表示连接起来以获得单一的多模态嵌入
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ArchiMeDe @ DANKMEMES: A New Model Architecture for Meme Detection
English. We introduce ArchiMeDe, a multimodal neural network-based architecture used to solve the DANKMEMES meme detections subtask at the 2020 EVALITA campaign. The system incor-porates information from visual and textual sources through a multimodal neural ensemble to predict if input images and their respective metadata are memes or not. Each pre-trained neural network in the ensemble is first fine-tuned indi-vidually on the training dataset to perform domain adaptation. Learned text and visual representations are then concatenated to obtain a single multimodal embedding
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信