基于社区结构网络的社会学习

He Huang, Yucheng Wei, Xiaofan Wang
{"title":"基于社区结构网络的社会学习","authors":"He Huang, Yucheng Wei, Xiaofan Wang","doi":"10.1109/ICMIC.2011.5973718","DOIUrl":null,"url":null,"abstract":"Almost all existing social learning models assume that there is only one type of agents in the society in order to avoid identification problem. In this work, we assume that there are various types of agents according to the communities they locate in. We design the rule of weight adjustment and testify that the updating rule with weight adjustment ensures learning on the whole social network. Furthermore, we show that how convergence speed is influenced by two updating-relevant parameters, and present instruction on how to attain the optimal social learning efficiency.","PeriodicalId":210380,"journal":{"name":"Proceedings of 2011 International Conference on Modelling, Identification and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Social learning on networks with community structure\",\"authors\":\"He Huang, Yucheng Wei, Xiaofan Wang\",\"doi\":\"10.1109/ICMIC.2011.5973718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Almost all existing social learning models assume that there is only one type of agents in the society in order to avoid identification problem. In this work, we assume that there are various types of agents according to the communities they locate in. We design the rule of weight adjustment and testify that the updating rule with weight adjustment ensures learning on the whole social network. Furthermore, we show that how convergence speed is influenced by two updating-relevant parameters, and present instruction on how to attain the optimal social learning efficiency.\",\"PeriodicalId\":210380,\"journal\":{\"name\":\"Proceedings of 2011 International Conference on Modelling, Identification and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 International Conference on Modelling, Identification and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2011.5973718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 International Conference on Modelling, Identification and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2011.5973718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了避免识别问题,几乎所有现有的社会学习模型都假设社会中只有一种类型的主体。在这项工作中,我们假设根据他们所在的社区有不同类型的代理。我们设计了权重调整规则,并证明了权重调整的更新规则保证了整个社会网络的学习。此外,我们展示了收敛速度如何受到两个更新相关参数的影响,并给出了如何达到最优社会学习效率的说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social learning on networks with community structure
Almost all existing social learning models assume that there is only one type of agents in the society in order to avoid identification problem. In this work, we assume that there are various types of agents according to the communities they locate in. We design the rule of weight adjustment and testify that the updating rule with weight adjustment ensures learning on the whole social network. Furthermore, we show that how convergence speed is influenced by two updating-relevant parameters, and present instruction on how to attain the optimal social learning efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信