Grigorios Kalliatakis, N. Vidakis, G. Triantafyllidis
{"title":"基于网络的头部姿势和面部表情变化可视化:利用深度数据监测人类活动","authors":"Grigorios Kalliatakis, N. Vidakis, G. Triantafyllidis","doi":"10.1109/CEEC.2016.7835887","DOIUrl":null,"url":null,"abstract":"Despite significant recent advances in the field of head pose estimation and facial expression recognition, raising the cognitive level when analysing human activity presents serious challenges to current concepts. Motivated by the need of generating comprehensible visual representations from different sets of data, we introduce a system capable of monitoring human activity through head pose and facial expression changes, utilising an affordable 3D sensing technology (Microsoft Kinect sensor). An approach build on discriminative random regression forests was selected in order to rapidly and accurately estimate head pose changes in unconstrained environment. In order to complete the secondary process of recognising four universal dominant facial expressions (happiness, anger, sadness and surprise), emotion recognition via facial expressions (ERFE) was adopted. After that, a lightweight data exchange format (JavaScript Object Notation-JSON) is employed, in order to manipulate the data extracted from the two aforementioned settings. Such mechanism can yield a platform for objective and effortless assessment of human activity within the context of serious gaming and human-computer interaction.","PeriodicalId":114518,"journal":{"name":"2016 8th Computer Science and Electronic Engineering (CEEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Web-based visualisation of head pose and facial expressions changes: Monitoring human activity using depth data\",\"authors\":\"Grigorios Kalliatakis, N. Vidakis, G. Triantafyllidis\",\"doi\":\"10.1109/CEEC.2016.7835887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite significant recent advances in the field of head pose estimation and facial expression recognition, raising the cognitive level when analysing human activity presents serious challenges to current concepts. Motivated by the need of generating comprehensible visual representations from different sets of data, we introduce a system capable of monitoring human activity through head pose and facial expression changes, utilising an affordable 3D sensing technology (Microsoft Kinect sensor). An approach build on discriminative random regression forests was selected in order to rapidly and accurately estimate head pose changes in unconstrained environment. In order to complete the secondary process of recognising four universal dominant facial expressions (happiness, anger, sadness and surprise), emotion recognition via facial expressions (ERFE) was adopted. After that, a lightweight data exchange format (JavaScript Object Notation-JSON) is employed, in order to manipulate the data extracted from the two aforementioned settings. Such mechanism can yield a platform for objective and effortless assessment of human activity within the context of serious gaming and human-computer interaction.\",\"PeriodicalId\":114518,\"journal\":{\"name\":\"2016 8th Computer Science and Electronic Engineering (CEEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Computer Science and Electronic Engineering (CEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEC.2016.7835887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Computer Science and Electronic Engineering (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2016.7835887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Web-based visualisation of head pose and facial expressions changes: Monitoring human activity using depth data
Despite significant recent advances in the field of head pose estimation and facial expression recognition, raising the cognitive level when analysing human activity presents serious challenges to current concepts. Motivated by the need of generating comprehensible visual representations from different sets of data, we introduce a system capable of monitoring human activity through head pose and facial expression changes, utilising an affordable 3D sensing technology (Microsoft Kinect sensor). An approach build on discriminative random regression forests was selected in order to rapidly and accurately estimate head pose changes in unconstrained environment. In order to complete the secondary process of recognising four universal dominant facial expressions (happiness, anger, sadness and surprise), emotion recognition via facial expressions (ERFE) was adopted. After that, a lightweight data exchange format (JavaScript Object Notation-JSON) is employed, in order to manipulate the data extracted from the two aforementioned settings. Such mechanism can yield a platform for objective and effortless assessment of human activity within the context of serious gaming and human-computer interaction.