行为用户认证的手动力学

Fuensanta Torres Garcia, Katharina Krombholz, Rudolf Mayer, E. Weippl
{"title":"行为用户认证的手动力学","authors":"Fuensanta Torres Garcia, Katharina Krombholz, Rudolf Mayer, E. Weippl","doi":"10.1109/ARES.2016.107","DOIUrl":null,"url":null,"abstract":"We propose and evaluate a method to authenticate individuals by their unique hand dynamics, based on measurements from wearable sensors. Our approach utilises individual characteristics of hand movement when opening a door. We implement a sensor-fusion machine learning algorithm to classify individuals based on their hand movement and conduct a lab study with 20 participants to test the feasibility of the concept in the context of accessing physical doors as found in office buildings. Our results show that our approach yields an accuracy of 92% in classifying an individual and thus highlights the potential for behavioral hand dynamics for authentication.","PeriodicalId":216417,"journal":{"name":"2016 11th International Conference on Availability, Reliability and Security (ARES)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hand Dynamics for Behavioral User Authentication\",\"authors\":\"Fuensanta Torres Garcia, Katharina Krombholz, Rudolf Mayer, E. Weippl\",\"doi\":\"10.1109/ARES.2016.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and evaluate a method to authenticate individuals by their unique hand dynamics, based on measurements from wearable sensors. Our approach utilises individual characteristics of hand movement when opening a door. We implement a sensor-fusion machine learning algorithm to classify individuals based on their hand movement and conduct a lab study with 20 participants to test the feasibility of the concept in the context of accessing physical doors as found in office buildings. Our results show that our approach yields an accuracy of 92% in classifying an individual and thus highlights the potential for behavioral hand dynamics for authentication.\",\"PeriodicalId\":216417,\"journal\":{\"name\":\"2016 11th International Conference on Availability, Reliability and Security (ARES)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th International Conference on Availability, Reliability and Security (ARES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2016.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Availability, Reliability and Security (ARES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2016.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出并评估了一种基于可穿戴传感器测量的独特手部动态来验证个人身份的方法。我们的方法利用了开门时手部运动的个体特征。我们实现了一种传感器融合机器学习算法,根据手部运动对个体进行分类,并对20名参与者进行了实验室研究,以测试该概念在访问办公楼物理门的背景下的可行性。我们的结果表明,我们的方法在对个体进行分类方面的准确率为92%,从而突出了行为手动力学用于身份验证的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand Dynamics for Behavioral User Authentication
We propose and evaluate a method to authenticate individuals by their unique hand dynamics, based on measurements from wearable sensors. Our approach utilises individual characteristics of hand movement when opening a door. We implement a sensor-fusion machine learning algorithm to classify individuals based on their hand movement and conduct a lab study with 20 participants to test the feasibility of the concept in the context of accessing physical doors as found in office buildings. Our results show that our approach yields an accuracy of 92% in classifying an individual and thus highlights the potential for behavioral hand dynamics for authentication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信