判别分析的BIC选择一致性研究

Qiong Zhang, Hansheng Wang
{"title":"判别分析的BIC选择一致性研究","authors":"Qiong Zhang, Hansheng Wang","doi":"10.2139/ssrn.1305764","DOIUrl":null,"url":null,"abstract":"Linear and/or quadratic discriminant analysis (based on finite Gaussian mixture) is one of the most useful classification methods, for which the problem of variable selection is poorly understood. To fill this important theoretical gap, a novel BIC-type selection criterion in conjunction with a backward elimination procedure is proposed. We show theoretically that the new method is able to identify the true Gaussian structure consistently, even with a heteroscedastic covariance structure. Numerical studies are presented to demonstrate the new method's usefulness.","PeriodicalId":447882,"journal":{"name":"ERN: Model Evaluation & Selection (Topic)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On BIC's Selection Consistency for Discriminant Analysis\",\"authors\":\"Qiong Zhang, Hansheng Wang\",\"doi\":\"10.2139/ssrn.1305764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear and/or quadratic discriminant analysis (based on finite Gaussian mixture) is one of the most useful classification methods, for which the problem of variable selection is poorly understood. To fill this important theoretical gap, a novel BIC-type selection criterion in conjunction with a backward elimination procedure is proposed. We show theoretically that the new method is able to identify the true Gaussian structure consistently, even with a heteroscedastic covariance structure. Numerical studies are presented to demonstrate the new method's usefulness.\",\"PeriodicalId\":447882,\"journal\":{\"name\":\"ERN: Model Evaluation & Selection (Topic)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Evaluation & Selection (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1305764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Evaluation & Selection (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1305764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

线性和/或二次判别分析(基于有限高斯混合)是最有用的分类方法之一,其中变量选择问题知之甚少。为了填补这一重要的理论空白,提出了一种新的bic型选择标准,并结合了向后消除过程。我们从理论上证明了新方法能够一致地识别真高斯结构,即使是异方差协方差结构。数值研究表明了新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On BIC's Selection Consistency for Discriminant Analysis
Linear and/or quadratic discriminant analysis (based on finite Gaussian mixture) is one of the most useful classification methods, for which the problem of variable selection is poorly understood. To fill this important theoretical gap, a novel BIC-type selection criterion in conjunction with a backward elimination procedure is proposed. We show theoretically that the new method is able to identify the true Gaussian structure consistently, even with a heteroscedastic covariance structure. Numerical studies are presented to demonstrate the new method's usefulness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信