基于影子价格的遗传算法求解裁剪库存问题

G. Shen, Yanqing Zhang
{"title":"基于影子价格的遗传算法求解裁剪库存问题","authors":"G. Shen, Yanqing Zhang","doi":"10.1504/IJAISC.2012.048176","DOIUrl":null,"url":null,"abstract":"The Cutting Stock Problem (CSP) is an integer combinatorial optimisation problem (an NP hard problem). It is an important problem in many industrial applications. In recent years, various traditional algorithms have been applied to the CSP, such as the Linear Programming (LP), the Branch and Cut (BC), the Evolutionary Algorithm (EA), etc. To continue improve performance, this paper proposes a novel Shadow Price based Genetic Algorithm (SPGA) to solve the CSP. The main contribution of this work is to combine distinct methods to generate better solutions. The experimental results have shown that the new SPGA has produced much better solutions than the classic Genetic Algorithm (GA) and other bio-inspired algorithms. This paper also demonstrates the new algorithm's capability of solving multi-objective optimisation problems.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"17 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shadow price based genetic algorithms for the cutting stock problem\",\"authors\":\"G. Shen, Yanqing Zhang\",\"doi\":\"10.1504/IJAISC.2012.048176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cutting Stock Problem (CSP) is an integer combinatorial optimisation problem (an NP hard problem). It is an important problem in many industrial applications. In recent years, various traditional algorithms have been applied to the CSP, such as the Linear Programming (LP), the Branch and Cut (BC), the Evolutionary Algorithm (EA), etc. To continue improve performance, this paper proposes a novel Shadow Price based Genetic Algorithm (SPGA) to solve the CSP. The main contribution of this work is to combine distinct methods to generate better solutions. The experimental results have shown that the new SPGA has produced much better solutions than the classic Genetic Algorithm (GA) and other bio-inspired algorithms. This paper also demonstrates the new algorithm's capability of solving multi-objective optimisation problems.\",\"PeriodicalId\":364571,\"journal\":{\"name\":\"Int. J. Artif. Intell. Soft Comput.\",\"volume\":\"17 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAISC.2012.048176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2012.048176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

切料问题(CSP)是一个整数组合优化问题(NP困难问题)。这是许多工业应用中的一个重要问题。近年来,各种传统算法被应用于CSP,如线性规划(LP)、分支切割(BC)、进化算法(EA)等。为了继续提高性能,本文提出了一种新的基于影子价格的遗传算法(SPGA)来解决CSP问题。这项工作的主要贡献是结合不同的方法来产生更好的解决方案。实验结果表明,该算法比传统的遗传算法(GA)和其他仿生算法得到了更好的解。本文还证明了新算法解决多目标优化问题的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shadow price based genetic algorithms for the cutting stock problem
The Cutting Stock Problem (CSP) is an integer combinatorial optimisation problem (an NP hard problem). It is an important problem in many industrial applications. In recent years, various traditional algorithms have been applied to the CSP, such as the Linear Programming (LP), the Branch and Cut (BC), the Evolutionary Algorithm (EA), etc. To continue improve performance, this paper proposes a novel Shadow Price based Genetic Algorithm (SPGA) to solve the CSP. The main contribution of this work is to combine distinct methods to generate better solutions. The experimental results have shown that the new SPGA has produced much better solutions than the classic Genetic Algorithm (GA) and other bio-inspired algorithms. This paper also demonstrates the new algorithm's capability of solving multi-objective optimisation problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信