利用遗传算法发现二元分类问题的元胞自动机规则

A. Piwonska, F. Seredyński, M. Szaban
{"title":"利用遗传算法发现二元分类问题的元胞自动机规则","authors":"A. Piwonska, F. Seredyński, M. Szaban","doi":"10.1109/IPDPSW.2012.81","DOIUrl":null,"url":null,"abstract":"This paper proposes a cellular automata-based solution of a two-dimensional binary classification problem. The proposed method is based on a two-dimensional, three-state cellular automaton (CA) with the von Neumann neighborhood. Since the number of possible CA rules (potential CA-based classifiers) is huge, searching efficient rules is conducted with use of a genetic algorithm (GA). Experiments show an excellent performance of discovered rules in solving the classification problem. The best found rules perform better than the heuristic CA rule designed by a human and also better than one of the most widely used statistical method: the k-nearest neighbors algorithm (k-NN). Experiments show that CAs rules can be successfully reused in the process of searching new rules.","PeriodicalId":378335,"journal":{"name":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discovering Cellular Automata Rules for Binary Classification Problem with Use of Genetic Algorithm\",\"authors\":\"A. Piwonska, F. Seredyński, M. Szaban\",\"doi\":\"10.1109/IPDPSW.2012.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a cellular automata-based solution of a two-dimensional binary classification problem. The proposed method is based on a two-dimensional, three-state cellular automaton (CA) with the von Neumann neighborhood. Since the number of possible CA rules (potential CA-based classifiers) is huge, searching efficient rules is conducted with use of a genetic algorithm (GA). Experiments show an excellent performance of discovered rules in solving the classification problem. The best found rules perform better than the heuristic CA rule designed by a human and also better than one of the most widely used statistical method: the k-nearest neighbors algorithm (k-NN). Experiments show that CAs rules can be successfully reused in the process of searching new rules.\",\"PeriodicalId\":378335,\"journal\":{\"name\":\"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2012.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2012.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于元胞自动机的二维二元分类问题的解决方案。提出的方法是基于一个二维,三状态元胞自动机(CA)与冯·诺依曼邻域。由于可能的CA规则(潜在的基于CA的分类器)数量巨大,因此使用遗传算法(GA)搜索有效的规则。实验表明,所发现的规则在解决分类问题方面表现优异。最佳发现规则的性能优于人类设计的启发式CA规则,也优于最广泛使用的统计方法之一:k近邻算法(k-NN)。实验表明,在搜索新规则的过程中,ca规则可以被成功重用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering Cellular Automata Rules for Binary Classification Problem with Use of Genetic Algorithm
This paper proposes a cellular automata-based solution of a two-dimensional binary classification problem. The proposed method is based on a two-dimensional, three-state cellular automaton (CA) with the von Neumann neighborhood. Since the number of possible CA rules (potential CA-based classifiers) is huge, searching efficient rules is conducted with use of a genetic algorithm (GA). Experiments show an excellent performance of discovered rules in solving the classification problem. The best found rules perform better than the heuristic CA rule designed by a human and also better than one of the most widely used statistical method: the k-nearest neighbors algorithm (k-NN). Experiments show that CAs rules can be successfully reused in the process of searching new rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信