{"title":"双异种材料界面iii型动态扩展裂纹尖端附近的弹粘塑性场","authors":"W. Liang, Zhenqing Wang, Pengcheng Lin","doi":"10.1109/ISSCAA.2010.5632307","DOIUrl":null,"url":null,"abstract":"The existence of viscosity effect at the interface of double dissimilar materials has an important impact to the distribution of interface crack-tip field and the properties variety of the interface itself. The singular is considered in crack-tip, and the elastic-viscoplastic quasi-static propagating governing equations of double dissimilar materials at interface crack-tip field are established. The displacement potential function and boundary condition of interface crack-tip are introduced and the numerical analysis of rigid-elastic viscoplastic interface for mode III are worked out. The stress-strain fields are obtained at the crack-tip and the variations of solutions are discussed according to each parameter. The numerical results show that the viscosity effect is a main factor of interface propagating crack-tip field, and the interface crack-tip is a viscoplastic field that is governed by viscosity coefficient, Mach number and singular factor.","PeriodicalId":324652,"journal":{"name":"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The elastic-viscoplastic field near mode iii dynamic propagating crack-tip of interface in double dissimilar materials\",\"authors\":\"W. Liang, Zhenqing Wang, Pengcheng Lin\",\"doi\":\"10.1109/ISSCAA.2010.5632307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of viscosity effect at the interface of double dissimilar materials has an important impact to the distribution of interface crack-tip field and the properties variety of the interface itself. The singular is considered in crack-tip, and the elastic-viscoplastic quasi-static propagating governing equations of double dissimilar materials at interface crack-tip field are established. The displacement potential function and boundary condition of interface crack-tip are introduced and the numerical analysis of rigid-elastic viscoplastic interface for mode III are worked out. The stress-strain fields are obtained at the crack-tip and the variations of solutions are discussed according to each parameter. The numerical results show that the viscosity effect is a main factor of interface propagating crack-tip field, and the interface crack-tip is a viscoplastic field that is governed by viscosity coefficient, Mach number and singular factor.\",\"PeriodicalId\":324652,\"journal\":{\"name\":\"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCAA.2010.5632307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCAA.2010.5632307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The elastic-viscoplastic field near mode iii dynamic propagating crack-tip of interface in double dissimilar materials
The existence of viscosity effect at the interface of double dissimilar materials has an important impact to the distribution of interface crack-tip field and the properties variety of the interface itself. The singular is considered in crack-tip, and the elastic-viscoplastic quasi-static propagating governing equations of double dissimilar materials at interface crack-tip field are established. The displacement potential function and boundary condition of interface crack-tip are introduced and the numerical analysis of rigid-elastic viscoplastic interface for mode III are worked out. The stress-strain fields are obtained at the crack-tip and the variations of solutions are discussed according to each parameter. The numerical results show that the viscosity effect is a main factor of interface propagating crack-tip field, and the interface crack-tip is a viscoplastic field that is governed by viscosity coefficient, Mach number and singular factor.