基于SVM的无振动筛生产线光学稳像器性能预测

Hyung-Kwoun Kim, JungHyun Lee, Jin-Hee Hyun, Haekeun Lim, GyuYeol Kim, HyukSoo Moon
{"title":"基于SVM的无振动筛生产线光学稳像器性能预测","authors":"Hyung-Kwoun Kim, JungHyun Lee, Jin-Hee Hyun, Haekeun Lim, GyuYeol Kim, HyukSoo Moon","doi":"10.1117/12.2209001","DOIUrl":null,"url":null,"abstract":"Recent smartphones adapt the camera module with optical image stabilizer(OIS) to enhance imaging quality in handshaking conditions. However, compared to the non-OIS camera module, the cost for implementing the OIS module is still high. One reason is that the production line for the OIS camera module requires a highly precise shaker table in final test process, which increases the unit cost of the production. In this paper, we propose a framework for the OIS quality prediction that is trained with the support vector machine and following module characterizing features : noise spectral density of gyroscope, optically measured linearity and cross-axis movement of hall and actuator. The classifier was tested on an actual production line and resulted in 88% accuracy of recall rate.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance prediction of optical image stabilizer using SVM for shaker-free production line\",\"authors\":\"Hyung-Kwoun Kim, JungHyun Lee, Jin-Hee Hyun, Haekeun Lim, GyuYeol Kim, HyukSoo Moon\",\"doi\":\"10.1117/12.2209001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent smartphones adapt the camera module with optical image stabilizer(OIS) to enhance imaging quality in handshaking conditions. However, compared to the non-OIS camera module, the cost for implementing the OIS module is still high. One reason is that the production line for the OIS camera module requires a highly precise shaker table in final test process, which increases the unit cost of the production. In this paper, we propose a framework for the OIS quality prediction that is trained with the support vector machine and following module characterizing features : noise spectral density of gyroscope, optically measured linearity and cross-axis movement of hall and actuator. The classifier was tested on an actual production line and resulted in 88% accuracy of recall rate.\",\"PeriodicalId\":285152,\"journal\":{\"name\":\"SPIE Photonics Europe\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Photonics Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2209001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photonics Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2209001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的智能手机采用了光学图像稳定器(OIS)的相机模块,以提高握手条件下的成像质量。然而,与非OIS相机模块相比,OIS模块的实现成本仍然很高。其中一个原因是,OIS相机模块的生产线在最终测试过程中需要一个高精度的激振台,这增加了生产的单位成本。在本文中,我们提出了一个OIS质量预测框架,该框架使用支持向量机和以下表征特征的模块进行训练:陀螺仪的噪声谱密度、光学测量的线性度和霍尔和执行器的跨轴运动。该分类器在实际生产线上进行了测试,召回率准确率达到88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance prediction of optical image stabilizer using SVM for shaker-free production line
Recent smartphones adapt the camera module with optical image stabilizer(OIS) to enhance imaging quality in handshaking conditions. However, compared to the non-OIS camera module, the cost for implementing the OIS module is still high. One reason is that the production line for the OIS camera module requires a highly precise shaker table in final test process, which increases the unit cost of the production. In this paper, we propose a framework for the OIS quality prediction that is trained with the support vector machine and following module characterizing features : noise spectral density of gyroscope, optically measured linearity and cross-axis movement of hall and actuator. The classifier was tested on an actual production line and resulted in 88% accuracy of recall rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信