自适应检测的双集期望似然GLRT技术

Y. Abramovich, N. Spencer
{"title":"自适应检测的双集期望似然GLRT技术","authors":"Y. Abramovich, N. Spencer","doi":"10.1109/CAMAP.2005.1574171","DOIUrl":null,"url":null,"abstract":"We introduce a new generalized likelihood-ratio test (GLRT) framework for adaptive detection that differs from Kelly's standard method (E.J. Kelly, 1986) in two main aspects. First, the separate functions of the primary and secondary data are respected, with a single set of interference estimates for both hypotheses being searched to optimize the detection performance. Second, instead of the traditional maximum likelihood (ML) principle, we propose to search for a set of estimates that generates statistically the same likelihood as the unknown true parameters. We present results for a typical example scenario that demonstrates considerable detection performance improvement.","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Two-set expected-likelihood GLRT technique for adaptive detection\",\"authors\":\"Y. Abramovich, N. Spencer\",\"doi\":\"10.1109/CAMAP.2005.1574171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new generalized likelihood-ratio test (GLRT) framework for adaptive detection that differs from Kelly's standard method (E.J. Kelly, 1986) in two main aspects. First, the separate functions of the primary and secondary data are respected, with a single set of interference estimates for both hypotheses being searched to optimize the detection performance. Second, instead of the traditional maximum likelihood (ML) principle, we propose to search for a set of estimates that generates statistically the same likelihood as the unknown true parameters. We present results for a typical example scenario that demonstrates considerable detection performance improvement.\",\"PeriodicalId\":281761,\"journal\":{\"name\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAP.2005.1574171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们引入了一种新的广义似然比检验(GLRT)框架,用于自适应检测,它与Kelly的标准方法(E.J. Kelly, 1986)在两个主要方面有所不同。首先,尊重主数据和辅助数据的独立函数,对两种假设搜索一组干扰估计以优化检测性能。其次,代替传统的最大似然(ML)原则,我们建议搜索一组与未知真实参数在统计上产生相同似然的估计。我们给出了一个典型示例场景的结果,该场景显示了相当大的检测性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-set expected-likelihood GLRT technique for adaptive detection
We introduce a new generalized likelihood-ratio test (GLRT) framework for adaptive detection that differs from Kelly's standard method (E.J. Kelly, 1986) in two main aspects. First, the separate functions of the primary and secondary data are respected, with a single set of interference estimates for both hypotheses being searched to optimize the detection performance. Second, instead of the traditional maximum likelihood (ML) principle, we propose to search for a set of estimates that generates statistically the same likelihood as the unknown true parameters. We present results for a typical example scenario that demonstrates considerable detection performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信