Yukun Yang, Min Xu, Wanneng Wu, Ruiheng Zhang, Yu Peng
{"title":"基于概率占用的三维多视角篮球运动员检测与定位","authors":"Yukun Yang, Min Xu, Wanneng Wu, Ruiheng Zhang, Yu Peng","doi":"10.1109/DICTA.2018.8615798","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of 3D multiview basketball players detection and localization. Existing methods for this problem typically take background subtraction as input, which limits the accuracy of localization and the performance of further object tracking. Moreover, the performance of background subtraction based methods is heavily impacted by the occlusions in crowded scenes. In this paper, we propose an innovative method which jointly implements deep learning based player detection and occupancy probability based player localization. What's more, a new Bayesian model of the localization algorithms is developed, which uses foreground information from fisheye cameras to setup meaningful initialization values in the first step of iteration, in order to not only eliminate ambiguous detection, but also accelerate computational processes. Experimental results on real basketball game data demonstrate that our methods significantly improve the performance compared with current methods, by eliminating missed and false detection, as well as increasing probabilities of positive results.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"61 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"3D Multiview Basketball Players Detection and Localization Based on Probabilistic Occupancy\",\"authors\":\"Yukun Yang, Min Xu, Wanneng Wu, Ruiheng Zhang, Yu Peng\",\"doi\":\"10.1109/DICTA.2018.8615798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the issue of 3D multiview basketball players detection and localization. Existing methods for this problem typically take background subtraction as input, which limits the accuracy of localization and the performance of further object tracking. Moreover, the performance of background subtraction based methods is heavily impacted by the occlusions in crowded scenes. In this paper, we propose an innovative method which jointly implements deep learning based player detection and occupancy probability based player localization. What's more, a new Bayesian model of the localization algorithms is developed, which uses foreground information from fisheye cameras to setup meaningful initialization values in the first step of iteration, in order to not only eliminate ambiguous detection, but also accelerate computational processes. Experimental results on real basketball game data demonstrate that our methods significantly improve the performance compared with current methods, by eliminating missed and false detection, as well as increasing probabilities of positive results.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"61 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D Multiview Basketball Players Detection and Localization Based on Probabilistic Occupancy
This paper addresses the issue of 3D multiview basketball players detection and localization. Existing methods for this problem typically take background subtraction as input, which limits the accuracy of localization and the performance of further object tracking. Moreover, the performance of background subtraction based methods is heavily impacted by the occlusions in crowded scenes. In this paper, we propose an innovative method which jointly implements deep learning based player detection and occupancy probability based player localization. What's more, a new Bayesian model of the localization algorithms is developed, which uses foreground information from fisheye cameras to setup meaningful initialization values in the first step of iteration, in order to not only eliminate ambiguous detection, but also accelerate computational processes. Experimental results on real basketball game data demonstrate that our methods significantly improve the performance compared with current methods, by eliminating missed and false detection, as well as increasing probabilities of positive results.