为什么朴素集成在云计算中不起作用

Wenxuan Gao, R. Grossman, Philip S. Yu, Yunhong Gu
{"title":"为什么朴素集成在云计算中不起作用","authors":"Wenxuan Gao, R. Grossman, Philip S. Yu, Yunhong Gu","doi":"10.1109/ICDMW.2009.85","DOIUrl":null,"url":null,"abstract":"One of the greatest challenges of data mining is dealing with very large datasets. Cloud computing has demonstrated great advantages in processing very large datasets. When considering taking advantage of the high performance data cloud to do data mining, there are different approaches to make an existing data mining algorithm parallelizable in a cloud computing environment. One concern is how to achieve better performance by making use of the data in a more intelligent way. In this paper, we describe two different approaches to parallelize the existing random decision tree mining algorithm, which we have built on the Sector/Sphere cloud computing environment. We compare the cost and accuracy between those two different implementations and analyze the result of this experimental study.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Why Naive Ensembles Do Not Work in Cloud Computing\",\"authors\":\"Wenxuan Gao, R. Grossman, Philip S. Yu, Yunhong Gu\",\"doi\":\"10.1109/ICDMW.2009.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the greatest challenges of data mining is dealing with very large datasets. Cloud computing has demonstrated great advantages in processing very large datasets. When considering taking advantage of the high performance data cloud to do data mining, there are different approaches to make an existing data mining algorithm parallelizable in a cloud computing environment. One concern is how to achieve better performance by making use of the data in a more intelligent way. In this paper, we describe two different approaches to parallelize the existing random decision tree mining algorithm, which we have built on the Sector/Sphere cloud computing environment. We compare the cost and accuracy between those two different implementations and analyze the result of this experimental study.\",\"PeriodicalId\":351078,\"journal\":{\"name\":\"2009 IEEE International Conference on Data Mining Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2009.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

数据挖掘的最大挑战之一是处理非常大的数据集。云计算在处理非常大的数据集方面展示了巨大的优势。在考虑利用高性能数据云进行数据挖掘时,有不同的方法可以使现有的数据挖掘算法在云计算环境中并行化。一个问题是如何通过以更智能的方式使用数据来实现更好的性能。在本文中,我们描述了两种不同的方法来并行化现有的随机决策树挖掘算法,我们已经建立在Sector/Sphere云计算环境上。我们比较了两种不同实现的成本和精度,并分析了实验研究的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why Naive Ensembles Do Not Work in Cloud Computing
One of the greatest challenges of data mining is dealing with very large datasets. Cloud computing has demonstrated great advantages in processing very large datasets. When considering taking advantage of the high performance data cloud to do data mining, there are different approaches to make an existing data mining algorithm parallelizable in a cloud computing environment. One concern is how to achieve better performance by making use of the data in a more intelligent way. In this paper, we describe two different approaches to parallelize the existing random decision tree mining algorithm, which we have built on the Sector/Sphere cloud computing environment. We compare the cost and accuracy between those two different implementations and analyze the result of this experimental study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信