在启用gpu的Apache Spark上透明避免冗余数据传输

Ryo Asai, M. Okita, Fumihiko Ino, K. Hagihara
{"title":"在启用gpu的Apache Spark上透明避免冗余数据传输","authors":"Ryo Asai, M. Okita, Fumihiko Ino, K. Hagihara","doi":"10.1145/3180270.3180276","DOIUrl":null,"url":null,"abstract":"This paper presents an extension to IBMSparkGPU, which is an Apache Spark framework capable of compute- or memory-intensive tasks on a graphics processing unit (GPU). The key contribution of this extension is an automated runtime that implicitly avoids redundant CPU-GPU data transfers without code modification. To realize this transparent capability, the runtime analyzes data dependencies of the target Spark code dynamically; thus, intermediate data on GPU can be cached, reused, and replaced appropriately to achieve acceleration. Experimental results demonstrate that the proposed runtime accelerates a machine learning application by a factor of 1.3. We expect that the proposed transparent runtime will be useful for accelerating IBMSparkGPU applications, which typically include a chain of GPU-offloaded tasks.","PeriodicalId":274320,"journal":{"name":"Proceedings of the 11th Workshop on General Purpose GPUs","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Transparent Avoidance of Redundant Data Transfer on GPU-enabled Apache Spark\",\"authors\":\"Ryo Asai, M. Okita, Fumihiko Ino, K. Hagihara\",\"doi\":\"10.1145/3180270.3180276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an extension to IBMSparkGPU, which is an Apache Spark framework capable of compute- or memory-intensive tasks on a graphics processing unit (GPU). The key contribution of this extension is an automated runtime that implicitly avoids redundant CPU-GPU data transfers without code modification. To realize this transparent capability, the runtime analyzes data dependencies of the target Spark code dynamically; thus, intermediate data on GPU can be cached, reused, and replaced appropriately to achieve acceleration. Experimental results demonstrate that the proposed runtime accelerates a machine learning application by a factor of 1.3. We expect that the proposed transparent runtime will be useful for accelerating IBMSparkGPU applications, which typically include a chain of GPU-offloaded tasks.\",\"PeriodicalId\":274320,\"journal\":{\"name\":\"Proceedings of the 11th Workshop on General Purpose GPUs\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Workshop on General Purpose GPUs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3180270.3180276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Workshop on General Purpose GPUs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180270.3180276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了IBMSparkGPU的扩展,它是一个Apache Spark框架,能够在图形处理单元(GPU)上执行计算或内存密集型任务。这个扩展的关键贡献是一个自动运行时,隐式地避免冗余的CPU-GPU数据传输而无需修改代码。为了实现这种透明功能,运行时动态分析目标Spark代码的数据依赖关系;因此,GPU上的中间数据可以被缓存、重用和适当替换,以实现加速。实验结果表明,所提出的运行时将机器学习应用程序的速度提高了1.3倍。我们期望提议的透明运行时将有助于加速IBMSparkGPU应用程序,这些应用程序通常包含一系列gpu卸载任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transparent Avoidance of Redundant Data Transfer on GPU-enabled Apache Spark
This paper presents an extension to IBMSparkGPU, which is an Apache Spark framework capable of compute- or memory-intensive tasks on a graphics processing unit (GPU). The key contribution of this extension is an automated runtime that implicitly avoids redundant CPU-GPU data transfers without code modification. To realize this transparent capability, the runtime analyzes data dependencies of the target Spark code dynamically; thus, intermediate data on GPU can be cached, reused, and replaced appropriately to achieve acceleration. Experimental results demonstrate that the proposed runtime accelerates a machine learning application by a factor of 1.3. We expect that the proposed transparent runtime will be useful for accelerating IBMSparkGPU applications, which typically include a chain of GPU-offloaded tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信