SoC fpga中第三方ip的运行时硬件木马检测与恢复

Luis Ramirez Rivera, Xiaofang Wang
{"title":"SoC fpga中第三方ip的运行时硬件木马检测与恢复","authors":"Luis Ramirez Rivera, Xiaofang Wang","doi":"10.1109/EUC50751.2020.00009","DOIUrl":null,"url":null,"abstract":"Emerging threats of untrustworthy third-party Intellectual Property (IP) cores (3PIPs) are increasingly raising crucial security concerns about field-programmable gate arrays (FPGAs), especially those used in military, medical, financial, and other critical systems. Detecting Trojans in blackbox 3PIPs is extremely challenging, especially for FPGAs due to their memory nature and dynamic partial or full reconfigurability. This paper presents a novel run-time methodology to prevent, detect, and manage the activation of hardware Trojans inside 3PIPs in FPGAs. Taking advantage of the native parallelism of FPGA designs, an isolated redundancy scheme is proposed to detect and protect a circuit from a Trojan payload. 3PIPs are placed in isolated regions in FPGAs and are controlled by an on-chip ARM processor system. The processor performs partial reconfiguration (PR) to temporarily remove an offending IP for a random amount of time that increases exponentially between each detection, or permanently if the IP has been positively detected as infected. Additionally, security policies are enacted by implementing reference monitors that control the communication between the IPs and various resources inside the FPGA. The design was implemented and verified on a Xilinx SoC FPGA development board using the Trust Hub benchmarks.","PeriodicalId":331605,"journal":{"name":"2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Run-time Hardware Trojan Detection and Recovery for Third-Party IPs in SoC FPGAs\",\"authors\":\"Luis Ramirez Rivera, Xiaofang Wang\",\"doi\":\"10.1109/EUC50751.2020.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging threats of untrustworthy third-party Intellectual Property (IP) cores (3PIPs) are increasingly raising crucial security concerns about field-programmable gate arrays (FPGAs), especially those used in military, medical, financial, and other critical systems. Detecting Trojans in blackbox 3PIPs is extremely challenging, especially for FPGAs due to their memory nature and dynamic partial or full reconfigurability. This paper presents a novel run-time methodology to prevent, detect, and manage the activation of hardware Trojans inside 3PIPs in FPGAs. Taking advantage of the native parallelism of FPGA designs, an isolated redundancy scheme is proposed to detect and protect a circuit from a Trojan payload. 3PIPs are placed in isolated regions in FPGAs and are controlled by an on-chip ARM processor system. The processor performs partial reconfiguration (PR) to temporarily remove an offending IP for a random amount of time that increases exponentially between each detection, or permanently if the IP has been positively detected as infected. Additionally, security policies are enacted by implementing reference monitors that control the communication between the IPs and various resources inside the FPGA. The design was implemented and verified on a Xilinx SoC FPGA development board using the Trust Hub benchmarks.\",\"PeriodicalId\":331605,\"journal\":{\"name\":\"2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUC50751.2020.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUC50751.2020.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

不可信的第三方知识产权(IP)核心(3pip)的新威胁日益引起对现场可编程门阵列(fpga)的关键安全关注,特别是那些用于军事、医疗、金融和其他关键系统的fpga。在黑盒3pip中检测木马是极具挑战性的,特别是对于fpga来说,由于它们的内存性质和动态部分或完全可重构性。本文提出了一种新的运行时方法来防止、检测和管理fpga中3pip内硬件木马的激活。利用FPGA设计本身的并行性,提出了一种隔离冗余方案来检测和保护电路免受木马负载的影响。3pip被放置在fpga的隔离区域,由片上ARM处理器系统控制。处理器执行部分重新配置(PR),在每次检测之间随机增加的时间内暂时删除违规IP,如果IP被检测为感染,则永久删除该IP。此外,安全策略是通过实现参考监视器来制定的,这些监视器控制ip和FPGA内各种资源之间的通信。该设计在Xilinx SoC FPGA开发板上使用Trust Hub基准测试实现和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Run-time Hardware Trojan Detection and Recovery for Third-Party IPs in SoC FPGAs
Emerging threats of untrustworthy third-party Intellectual Property (IP) cores (3PIPs) are increasingly raising crucial security concerns about field-programmable gate arrays (FPGAs), especially those used in military, medical, financial, and other critical systems. Detecting Trojans in blackbox 3PIPs is extremely challenging, especially for FPGAs due to their memory nature and dynamic partial or full reconfigurability. This paper presents a novel run-time methodology to prevent, detect, and manage the activation of hardware Trojans inside 3PIPs in FPGAs. Taking advantage of the native parallelism of FPGA designs, an isolated redundancy scheme is proposed to detect and protect a circuit from a Trojan payload. 3PIPs are placed in isolated regions in FPGAs and are controlled by an on-chip ARM processor system. The processor performs partial reconfiguration (PR) to temporarily remove an offending IP for a random amount of time that increases exponentially between each detection, or permanently if the IP has been positively detected as infected. Additionally, security policies are enacted by implementing reference monitors that control the communication between the IPs and various resources inside the FPGA. The design was implemented and verified on a Xilinx SoC FPGA development board using the Trust Hub benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信