患者路径模型的随机效应敏感性分析

Shola Adeyemi, T. Chaussalet
{"title":"患者路径模型的随机效应敏感性分析","authors":"Shola Adeyemi, T. Chaussalet","doi":"10.1109/CBMS.2008.49","DOIUrl":null,"url":null,"abstract":"In this paper, we present a random effects approach to modelling of patient pathways with an application to the neonatal unit of a large metropolitan hospital. This approach could be used to identify pathways such as those resulting in high probabilities of death/survival, and to estimate cost of care or length of stay. Patient-specific discharge probabilities could also be predicted as a function of the random effect. We also investigate the sensitivity of our modelling results to random effects distribution assumptions.","PeriodicalId":377855,"journal":{"name":"2008 21st IEEE International Symposium on Computer-Based Medical Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Random Effects Sensitivity Analysis for Patient Pathways Model\",\"authors\":\"Shola Adeyemi, T. Chaussalet\",\"doi\":\"10.1109/CBMS.2008.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a random effects approach to modelling of patient pathways with an application to the neonatal unit of a large metropolitan hospital. This approach could be used to identify pathways such as those resulting in high probabilities of death/survival, and to estimate cost of care or length of stay. Patient-specific discharge probabilities could also be predicted as a function of the random effect. We also investigate the sensitivity of our modelling results to random effects distribution assumptions.\",\"PeriodicalId\":377855,\"journal\":{\"name\":\"2008 21st IEEE International Symposium on Computer-Based Medical Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 21st IEEE International Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2008.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 21st IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2008.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一个随机效应的方法,以模拟病人的途径与应用于新生儿单位的大型都市医院。这种方法可用于确定诸如导致高死亡/生存概率的途径,并估计护理费用或住院时间。患者特定的出院概率也可以作为随机效应的函数来预测。我们还研究了我们的建模结果对随机效应分布假设的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Random Effects Sensitivity Analysis for Patient Pathways Model
In this paper, we present a random effects approach to modelling of patient pathways with an application to the neonatal unit of a large metropolitan hospital. This approach could be used to identify pathways such as those resulting in high probabilities of death/survival, and to estimate cost of care or length of stay. Patient-specific discharge probabilities could also be predicted as a function of the random effect. We also investigate the sensitivity of our modelling results to random effects distribution assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信