多处理系统任务分配的混沌模拟退火

K. Ferens, D. Cook, W. Kinsner
{"title":"多处理系统任务分配的混沌模拟退火","authors":"K. Ferens, D. Cook, W. Kinsner","doi":"10.1109/ICCI-CC.2013.6622222","DOIUrl":null,"url":null,"abstract":"Two different variations of chaotic simulated annealing were applied to combinatorial optimization problems in multiprocessor task allocation. Chaotic walks in the solution space were taken to search for the global optimum or “good enough” task-to-processor allocation solutions. Chaotic variables were generated to set the number of perturbations made in each iteration of a chaotic simulated annealing algorithm. In addition, parameters of a chaotic variable generator were adjusted to create different chaotic distributions with which to search the solution space. The results show a faster convergence time than conventional simulated annealing when the solutions are far apart in the solution space.","PeriodicalId":130244,"journal":{"name":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chaotic simulated annealing for task allocation in a multiprocessing system\",\"authors\":\"K. Ferens, D. Cook, W. Kinsner\",\"doi\":\"10.1109/ICCI-CC.2013.6622222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two different variations of chaotic simulated annealing were applied to combinatorial optimization problems in multiprocessor task allocation. Chaotic walks in the solution space were taken to search for the global optimum or “good enough” task-to-processor allocation solutions. Chaotic variables were generated to set the number of perturbations made in each iteration of a chaotic simulated annealing algorithm. In addition, parameters of a chaotic variable generator were adjusted to create different chaotic distributions with which to search the solution space. The results show a faster convergence time than conventional simulated annealing when the solutions are far apart in the solution space.\",\"PeriodicalId\":130244,\"journal\":{\"name\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2013.6622222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2013.6622222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将两种不同的混沌模拟退火方法应用于多处理机任务分配的组合优化问题。在解空间中进行混沌行走,以寻找全局最优或“足够好”的任务-处理器分配方案。生成混沌变量来设置混沌模拟退火算法每次迭代所产生的扰动数量。此外,通过调整混沌变量发生器的参数,产生不同的混沌分布,利用混沌分布搜索解空间。结果表明,当解在解空间中相距较远时,该方法的收敛速度比传统模拟退火方法快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaotic simulated annealing for task allocation in a multiprocessing system
Two different variations of chaotic simulated annealing were applied to combinatorial optimization problems in multiprocessor task allocation. Chaotic walks in the solution space were taken to search for the global optimum or “good enough” task-to-processor allocation solutions. Chaotic variables were generated to set the number of perturbations made in each iteration of a chaotic simulated annealing algorithm. In addition, parameters of a chaotic variable generator were adjusted to create different chaotic distributions with which to search the solution space. The results show a faster convergence time than conventional simulated annealing when the solutions are far apart in the solution space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信