多变量高斯分布的CPD分解

F. Govaers
{"title":"多变量高斯分布的CPD分解","authors":"F. Govaers","doi":"10.1109/SDF.2018.8547115","DOIUrl":null,"url":null,"abstract":"Tensor decomposition based sensor data fusion is a novel field of numerical solutions to the Bayesian filtering problem. Due to the exponential growth of high dimensional tensors, this approach has not got much attention in the past. This has changed with the rise of efficient decomposition algorithms such as the lCanonical Polyadic Decomposition’ (CPD), which allow a compact representation of the precise, discretized information in the state space. As solutions of the prediction-filtering cycle were developed, it usually is assumed that a decomposition of the likelihood or the initial prior is available. In this paper, we propose a numerical method to compute the CPD form of a multivariate Gaussian, either a likelihood or a prior, in terms of an analytical solution in combination with the Taylor approximation of the pointwise tensor exponential.","PeriodicalId":357592,"journal":{"name":"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a CPD Decomposition of a Multi-Variate Gaussian\",\"authors\":\"F. Govaers\",\"doi\":\"10.1109/SDF.2018.8547115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor decomposition based sensor data fusion is a novel field of numerical solutions to the Bayesian filtering problem. Due to the exponential growth of high dimensional tensors, this approach has not got much attention in the past. This has changed with the rise of efficient decomposition algorithms such as the lCanonical Polyadic Decomposition’ (CPD), which allow a compact representation of the precise, discretized information in the state space. As solutions of the prediction-filtering cycle were developed, it usually is assumed that a decomposition of the likelihood or the initial prior is available. In this paper, we propose a numerical method to compute the CPD form of a multivariate Gaussian, either a likelihood or a prior, in terms of an analytical solution in combination with the Taylor approximation of the pointwise tensor exponential.\",\"PeriodicalId\":357592,\"journal\":{\"name\":\"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2018.8547115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2018.8547115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于张量分解的传感器数据融合是贝叶斯滤波问题数值解的一个新领域。由于高维张量的指数增长,这种方法在过去没有得到太多的关注。这种情况随着高效分解算法的出现而改变,例如“正则多元分解”(CPD),它允许在状态空间中对精确的离散信息进行紧凑表示。在开发预测-过滤循环的解时,通常假设似然或初始先验的分解是可用的。在本文中,我们提出了一种数值方法来计算多元高斯函数的CPD形式,无论是似然还是先验,结合点向张量指数的泰勒近似的解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a CPD Decomposition of a Multi-Variate Gaussian
Tensor decomposition based sensor data fusion is a novel field of numerical solutions to the Bayesian filtering problem. Due to the exponential growth of high dimensional tensors, this approach has not got much attention in the past. This has changed with the rise of efficient decomposition algorithms such as the lCanonical Polyadic Decomposition’ (CPD), which allow a compact representation of the precise, discretized information in the state space. As solutions of the prediction-filtering cycle were developed, it usually is assumed that a decomposition of the likelihood or the initial prior is available. In this paper, we propose a numerical method to compute the CPD form of a multivariate Gaussian, either a likelihood or a prior, in terms of an analytical solution in combination with the Taylor approximation of the pointwise tensor exponential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信