Thomas J. Kramer, Erik R. Biehl, Matthew B. Heintzelman, S. Blunt, Erick Steinbach
{"title":"非重复FMCW雷达波形的紧凑参数化","authors":"Thomas J. Kramer, Erik R. Biehl, Matthew B. Heintzelman, S. Blunt, Erick Steinbach","doi":"10.1109/RadarConf2351548.2023.10149578","DOIUrl":null,"url":null,"abstract":"Spectrally shaped forms of random frequency modulation (RFM) radar waveforms have been experimentally demonstrated for a variety of implementation approaches and applications. Of these, the continuous-wave (CW) perspective is particularly interesting because it enables the prospect of very high signal dimensionality and arbitrary receive processing from a range/Doppler perspective, while also mitigating range ambiguities by avoiding repetition. Here we leverage a modification to the constant-envelope orthogonal frequency division multiplexing (CE-OFDM) framework, which was originally proposed for power-efficient communications, to realize a nonrepeating FMCW radar signal that can be represented with a compact parameterization, thereby circumventing memory constraints that could arise for some applications. Experimental loopback and open-air measurements are used to demonstrate this waveform type.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"19 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Compact Parameterization of Nonrepeating FMCW Radar Waveforms\",\"authors\":\"Thomas J. Kramer, Erik R. Biehl, Matthew B. Heintzelman, S. Blunt, Erick Steinbach\",\"doi\":\"10.1109/RadarConf2351548.2023.10149578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrally shaped forms of random frequency modulation (RFM) radar waveforms have been experimentally demonstrated for a variety of implementation approaches and applications. Of these, the continuous-wave (CW) perspective is particularly interesting because it enables the prospect of very high signal dimensionality and arbitrary receive processing from a range/Doppler perspective, while also mitigating range ambiguities by avoiding repetition. Here we leverage a modification to the constant-envelope orthogonal frequency division multiplexing (CE-OFDM) framework, which was originally proposed for power-efficient communications, to realize a nonrepeating FMCW radar signal that can be represented with a compact parameterization, thereby circumventing memory constraints that could arise for some applications. Experimental loopback and open-air measurements are used to demonstrate this waveform type.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"19 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact Parameterization of Nonrepeating FMCW Radar Waveforms
Spectrally shaped forms of random frequency modulation (RFM) radar waveforms have been experimentally demonstrated for a variety of implementation approaches and applications. Of these, the continuous-wave (CW) perspective is particularly interesting because it enables the prospect of very high signal dimensionality and arbitrary receive processing from a range/Doppler perspective, while also mitigating range ambiguities by avoiding repetition. Here we leverage a modification to the constant-envelope orthogonal frequency division multiplexing (CE-OFDM) framework, which was originally proposed for power-efficient communications, to realize a nonrepeating FMCW radar signal that can be represented with a compact parameterization, thereby circumventing memory constraints that could arise for some applications. Experimental loopback and open-air measurements are used to demonstrate this waveform type.